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0.1 Introduction

In this literature review, we survey the state of vectorization in Haskell, the
programming language [Jon03]. For our review we initially consider the In-
tel Haskell Research compiler [Liu+13] and secondly the most popular Haskell
compiler - GHC or the Glorious Glasgow Haskell Compilation System.

Vectorization essentially means rewriting loops which operate on a single ele-
ment per loop, to allow them to use structures called vectors which provides the
capability of operating on multiple elements paralelly. We discuss the definition
in much more detail, in the following section.

We study a general automatic vectorization algorithm in our first chapter
and then in the second, we actually study how to leverage the support of vec-
torization from the compiler to model a representation of data structures, ideal
for vector instructions usage.

The second chapter provides a comprehensive set of benchmarks on a partic-
ular algorithm, which demonstrates that GHC can emit faster code than GCC
(the GNU C compiler) in certain cases. The first chapter also provides bench-
marks showing that in certain cases GHC can be made even faster by extending
the ”core” language and intermediate representation of the compiler. Most of
the above benchmarks study algorithms which are parallel in nature. We utilize
the vector support provided by the underlying hardware to speed up our code.
So let us start by understanding in detail about vectorization.

0.2 Parallelism and Vectorization

In 1965, Gordon Moore in his seminal paper titled the Moore’s Law [Moo65]
observed “the number of transistors per square inch of a processor had doubled
every 18 months”. This law held true for years to come as a result of which,
every new generation of processor by Intel, AMD and the other manufacturers
increased their speed and performance at a very steady rate. However over the
last couple of decades the size of the each transistor has been approaching such
a minuscule number (currently the world’s smallest transistor is 1 nm wide,
compare that to the atomic size of silicon which is about 0.2 nanometers) that
it is very clear that the Moore’s law is finally going to approach its saturation
point.

As a result of which hardware manufacturers are investing in research in
various other possibilities to speed up the processors. A natural progress was
to embed multiple computing units(more commonly termed multi core) in a
single processors and achieve parallelism through that. Another approach was to
introduce CPU pipelining to ensure partial overlap in the execution of multiple
instructions. There are multiple such strategies and as a result of which the
various kinds of parallelism can be grouped into two major parts:

e Data Parallelism

e Instruction -level parallelism



While there are many more possible sub groupings of parallelism like task
level parallelism, thread level parallelism etc that appear in various parallel
computing literature, those are majorly examples of software based parallelism.
Here we are mostly interested in hardware support for parallelism. In his highly
cited 1966 paper [Fly66], MJ Flynn introduced what is now known as ”Flynn’s
Taxonomy” to classify various types of hardware. Its easier to demonstrate the
Flynn’s Taxonomy with the help of a figure:
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Figure 1: Flynn’s Taxonomy

Let us elaborate on the nomenclature:

e SISD : Single Instruction Single Data

e MISD : Multiple Instruction Single Data

e SIMD : Single Instruction Multiple Data

e MIMD : Multiple Instruction Multiple Data

SISD implies a general sequential computer which executes a single instruc-
tion to operate on a single piece of data. MISD doesn’t make a lot of sense and
is not generally used. SIMD falls under the category of data parallelism, when a
single instruction is able to operate on multiple data which is commonly known
as vector machine approach or vectorization and finally MIMD generally implies
any other parallelism approach like pipelining, multi core processing etc.

For the purpose of this literature review we will be dealing with Single In-
struction Multiple Data operations which henceforth shall be always referred by
the acronym SIMD pronounced as ” seem-dee”.

0.3 Intel Vector Intrinsics

As mentioned in the previous section vectorization is an example of data level
parallelism. Using SIMD operations we can execute the same instruction on
multiple pieces of data at the same time. Let us take an example.

add.d r3, r1, r2

addvec.d v3, vl, v2



The first instruction is a plain SISD instruction. So imagine r! and r2 are
normal registers in a 64 bit machine holding an integer. In a 64 bit machine the
size of a pointer is 64 bits, however the size of an integer is generally 4 bytes or
32 bits. So the first instruction adds two 32 bit integers in r1 and r2 and stores
the result in the register r3.

Now let us assume for the second instruction that it is from the Intel Nehalem
set of microarchitectures which supports 16 byte width registers. So the registers
vl and v2 are SIMD registers of 16 byte or 128 bit width. This implies that each
of these registers can hold four 32 bit integers. So the instruction addvec.d
parallely operates on four pieces of data at the same time. The operation can
be visualized(figure from Intel SIMD extensions technology page) something like
this:
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Figure 2: Intel vector intrinsics

As demonstrated in the figure above the data is divided into streams of data
and each instruction is fed from multiple streams. This streaming nature of
the data gives the name Streaming SIMD Extensions or SSE to the first family
of these instruction sets. Consequently Intel has provided support for multiple
other operations like addition, subtraction, multiplication, shuffling, compar-
ing, cryptographic etc. In the year 2008, Intel provided an additional set of
even wider registers which supported 256 bit operations(i.e operating on eight
32 bit integers at the same time) with the Intel Sandy Bridge microarchitec-
ture and provided a more modern and convenient set of vector APIs calling it
AVX or Advanced Vector FExtensions. In 2015 an even wider 512 bit register
set was introduced in the Intel Xeon Phi range of micro-architectures which
were targeted for usage in supercomputers and high performance servers. ARM
also introduced a similar line of instruction set calling them the ARM Neon
instruction set.

These vector instructions are used by a multitude of Fortran and C compilers
to parallelize and speed up their programs. Major C compilers like GCC and
clang as well as Fortran compilers like Intel Fortran compiler and GNU Fortran
compiler provide full support for SIMD operations.



The term ”compiler intrinsics” is used to define special built-in functions
provided by the language compiler to undertake various specialized functions
like inlining, vectorization etc. As a part of my dissertation, I hope to add
support for the same vector compiler intrinsics in the Glasgow Haskell Compiler
or GHC. This would make Haskell the sixth major programming language (after
C, C++, Fortran, APL, D) to have full support for vectorization (Rust and Go
have very experimental support).

In the following section of the paper we will be studying the Intel Haskell
Research Compiler which experimented with and modified certain portions of
the GHC compiler pipeline and intermediate language to attain automatic vec-
torization.



Chapter 1

Automatic SIMD
Vectorization for Haskell by
Petersen et al

1.1 Introduction to GHC

The paper that we are reviewing here [POG13], is innately connected to the
Glasgow Haskell Compiler, as the frontend of the THRC compiler(the Intel
Haskell Research compiler referenced by its acronym from here onwards) is GHC
itself. So let us briefly have a look at the compilation pipeline of GHC[Jon+93].

C-- Multiple
representation Backends

.hs source file —={ Core — STG —

Figure 1.1: The GHC compilation pipeline

The above figure demonstrates the general compilation phases that a Haskell
program goes through. We are not concerned with the entire pipeline. All
Haskell programs are reduced to a variant of lambda calculus [Chu36] called
System F [Rey74]. System F provides a small and compact core intermediate
language (titled ”Core” in the figure) for the vast Haskell language to compile
down to.

The THRC intercepts the System F core representation, as a result it gains
the sophisticated optimization which are applied on GHC before compiling down
to System F. Haskell being a purely functional language, emphasizes on im-
mutability. As a result of which it generates a lot of intermediate structures
and array. The first phase of compilation in GHC also attempts to eliminates
as many intermediate arrays as possible which simplifies the job of the IHRC



compiler.

1.2 The Intel Haskell Research Compiler

The IHRC compiler utilizes a static single assignment form or SSA based rep-
resentation as its intermediate language. An SSA form representation [RWZ88]
is more common in compilers for imperative languages like Fortran or C. Func-
tional languages like Haskell use different forms of intermediate representa-
tions(IR) like continuation passing style or CPS [Rey72] or administrative nor-
mal form or ANF [SF93] style of representation for their intermediate languages.
This is a unique choice of IR for a functional language compiler.

An SSA form enforces that every variable is assigned exactly once and it is
initialized before its use. For eg:

y =1
y =2
X 1=y

In SSA the above becomes:

yl =1
y2 := 2
x1l = y2

As a result, the control flow graph [All70] for the program becomes relatively
simpler to analyze. In the control flow graph of a program the loop becomes the
strongest connected component of the graph. Most of the compiler is designed
to work with mutable and immutable arrays, with the optimizations focused on
the latter. All general compiler optimizations like inlining, contification[FWO01],
loop-invariant code motion and a general simplifier [AJ97] are present in the
compiler. The compiler targets a variant of C known as Pillar [And+07]. The
pillar code is finally translated using the Intel C compiler or GCC to emit the
machine code. All of this is linked with a small run-time supporting garbage
collection.

1.3 Working with Arrays

Apart from the different intermediate representation a major point of difference
is the handling of immutable arrays. Haskell provides certain high level libraries
like Data.Vector and REPA [Kel+10] to work with general immutable arrays.
However the handling of these arrays are very different compared to imperative
languages. The arrays are represented as streams and the operations undergo a
powerful optimization called Stream Fusion [CLSOT].



1.3.1 Stream Fusion

Higher order functions initially turns the array into a stream based representa-
tion (which we define in depth in the second literature review). The function
is applied to individual element of the stream, followed by which a mutable
array of the original size is created. Each element of the array is successively
initialized using array updates and finally this mutable array is frozen to an
immutable array type. This action of thawing and freezing a data structure in
Haskell happens inside the ST Monad [LP94]. GHC utilizes aggressive inlining
and multiple simplification functions to eliminate all the intermediate structures
created.

Unfortunately this form of mutable array creation and consumption is hard
to optimize for the IHRC compiler. To handle this the IHRC compiler extends
GHC with a primitive immutable array type and a special kind of operation
termed as initializing write. According to the paper,

The two invariants of initializing writes are that reading an array
element must always follow the initializing write of that element,
and that any element can only be initialized once. This style of write
preserves the benefits of immutability from the compiler standpoint,
since any initializing write to an element is the unique definition of
that element.

As aresult of the above two invariants, IHRC can again work with immutable
arrays and try vectorizing loops which operates on these arrays. Loops generally
comprises of a major part of a program. The purpose of the loops are to initialize
these immutable arrays or perform reductions over them. IHRC specifically
targets these loops and tries to generate SIMD code for these loops.

1.4 The Vector Core Language

The entire syntax of the core language and operations of the compiler, as defined
in the paper, is given in Figure 1.2

As we can see in the figure, there are two kinds of register given by k ::= s|v.
s stands for scalar and v stands for vector. For the sake of simplicity the
paper assumes a 32 bit machine with 32 bit width scalar registers and 256
bits wide SIMD registers. Handling other register widths and different micro
architectures is a separate problem statement. We are more interested in the
auto-vectorization algorithm presented in the paper.

Most of the operations are very common and most of the variety of instruc-
tions lie in the loading and storing of various kinds of elements to the various
types of registers.

The unique notion of immutability in the array types (denoted by z*[y*®] or
x®[(y")] etc) is emphasized by this note:

It is an unchecked invariant of the language that every element of
the array is initialized before it is read, and that every element of



Registerkind & =s|v
Variables o ..
Constants ¢ 2% (2% =-1)
Operations [ +, =% [,
Instruction 2°=c
2 = (25, 20)
f=zl
2° = op(z, ..., 23)
2" = (op)(zj, ..., 27)
Zs =DGU[.'££]
2 =2ly’]
¥ = 2[(y")]
z =]
e )
(Y] + 2
[(y*)] « =°
(@) y"] ="
(=) [w")] 2"
Comparisons cmp = z° < y° |z® < y°|a° =y
Labels L = L°%L!
Transfers t = thDL[.'EG.‘.....LE::)
| if (emp) goto Lo(zf, ..., z5)
else goto Ll(y3§1. . y:‘“)
| halt
Blocks B o= L(zf,...zh):
Iy
Im
i
Control Flow Graph ::= Entry L in {By,..., B.}

Figure 1. Syntax

Figure 1.2: The Vector core language

the array is initialized at most once. It is in this sense that the
arrays are immutable—the write operation on arrays serves only as
an initializing write but does not provide for mutation.

Some notable operations are the ”scatter” and ”gather” operations which
are very common in parallel computing. They are defined above as:

2 = 2°[(y?)

It takes a single array z® and a vector of offsets y” and binds them all
together into the vector zV. This operation can be seen as a ”gathering” of
multiple vectors and is called the ”gather” operation. The dual of this operation
is called ”scatter” which is:

2°[(y)] « 27

and it writes or scatters the elements of the array z¥ to the array of offsets.
Generally the elements won’t be laid out uniformly in the memory, however
in the cases that this happens, the core language provide special instruction
support for vectors where stride in the layout of the memory is known to be
one. Many architectures support these idioms directly, as a result of which the
support of these instructions provide an improved performance.

A full program would contain a single control flow graph with a designated
entry label L and bunch of other labels leading ahead from it. Programs keep
on executing, traversing the control flow graph until it encounters a halt in-
struction. The style of single static assignment form used here is compared to



the MLton compiler [Wee06].

1.5 Automatic Vectorization in IHRC

To study vectorization in the IHRC compiler the paper takes an example pro-
gram: computing the point-wise sum of two arrays b° and ¢*, each of the length
[*. A naive non-vectorized code for this program is given in the paper:

L) L* (i)
a® = new[l’] z® = b*[¢®]
ip=0 y® = c°[i°)
goto L' (4§ 2* = +(z*,y°)
a®[i°] + 2°
i = +(°,1)

if (3] < [°) goto Ll(_ii)
else goto L™ (if)

Figure 1.3: The scalar code from the paper

As we can see above, all of the registers used are of type s which are scalar
registers. The paper further introduces some terminologies as given below:

e Base induction variable: The entry variable in the entry block of the loop,
such that the definition of the variable on the loop-back edge is defined
from this variable itself.

e Step: The constant added each time around the loop
e Induction variable:

— The base induction variable

— A variable defined by z° = +(y°, z°), where y° is an induction vari-
able and z° is loop invariant

— A variable defined by x® = *(y®, 2*), where y* is an induction variable
and 2° is a constant (defined by 2° = ¢)

As an example, in the following code:

int i, j;
for (1 =0; j=1x*2; 1i<10; i ++){

3

1 = 0 is the base induction variable, the step size is one and both j and i in
every subsequent iteration is an induction variable.

A characteristic function of an induction variable ¢° is defined as i® = sx#+d.
Here d is the initial value of the induction variable, s the step function and # is



the iteration number. The compiler ensures that the numeric overflow semantics
of the underlying types are respected.

A naive vectorization strategy would be to convert every scalar register to
a vector format but the paper gives this counter: converting z° = b°[i®] to
x¥ = (b¥)[(i¥)] would involve the redundancy that the variable (b*) would just
comprise eight copies of b°. A better option would be ¥ = b*[(i”)]. A further
optimization would be utilizing the knowledge that the step value in this loop
is one and as mentioned in the previous section that certain hardware would
have native support for vectors laid out in a uniform stride. So the instruction
reduces to ¥ = b¥[(i° :)]

The vectorization for the reduction operation is fairly simple which is just
using the vector add instruction instead of the scalar add. Writing the final
computation to the new array is again dual to the previous instructions that we
read. It reduces to a®[(i® :)] < z" utilizing the contiguous write sequence.

The final instruction to vectorize is the i§ = +(i°,1) instruction. While
this looks deceptively simple, it is important to realize that there are three
functionalities for this instruction: (1) to check whether to proceed with another
iteration (2) to provide a new value for the induction variable (3) to provide the
value passed on to the exit edge. For the last two cases it is sufficient enough
to see if there are 8 such iterations (8 is the width of the SIMD register). For
the loop exit test case, the paper defines the test as:

in order to execute the vector loop again, we must have at least
eight remaining iterations. Upon completion of a vector iteration

computing scalar iterations j, . . . , j + 7, the question that must
be answered then is whether the scalar loop would always execute
iterations j + 8, . . . , j + 15. Because of the monotonic nature of

the induction variable computation this in turn can be reduced to
the question of whether or not the value of ¢{ at iteration j + 15 is
less than [°.

So in the case, as mentioned above, if there are not enough iterations remain-
ing, we resort back to the scalar loop. And putting all of the ideas discussed
above, the vectorized loop is given in Figure 1.4

The automatic vectorization algorithm translates each scalar instruction to
compute a scalar value, a vector value and a last value(value generated at the
end of the loop). As a result the code generated is highly verbose. However,
the compiler depends on other orthogonal optimization passes like dead code
elimination, common sub-expression elimination, loop invariant code motion
[ASUS6] to remove the verbosity.

The remaining vectorization section of the paper goes into intricate details
of how each variable undergoes the vector transformation and all the checks
associated with them, which is beyond the scope of this review.

Finally the paper talks about dependence analysis [Ban97] which is used to
determine when it is possible to do a vectorization transformation. While this
a well known hard problem to solve, in the case of IHRC this becomes quite
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L(] 0 Lcheck 0
a’® = new[l’]

i5=0 if (i§ < [°) goto L'(i§)

if (7 < 1°) goto L2(3) else goto L™(i5)
else goto L1 (i)

L2(85): Li(i%):

z¥ = b°[(i5:)] z° = b°[]

v = iz v =]

2¥ = {(+)(=",y") 2* = +(z*,y°)

a’[(i5:)] + 2" a’[i®] « 2°

i§ = +(i3,8) i =+, 1)

i3 = +(i3,15) if (45 < I°) goto L'(45)

if (4§ < 1°) goto L1(i) else goto L™!(35)
else goto L™*()

Figure 1.4: The vectorized code from the paper

simple owing to dealing with immutable arrays. There are generally three types
of dependences:

e Flow Dependence: When a read happens after a write
e Anti Dependence: When a write happens after a read

e Output Dependence: When a write happens after a write

As we discussed in Section 1.3 of working with arrays, the concept of initial-
izing write ensure that anti dependence can never occur. Output dependence
implies mutation and as IHRC is dealing with immutable arrays, that is also
ruled out. So we only deal with flow(read after write) dependence in the IHRC
compiler. And according to the paper:

a very naive analysis can be quite successful at breaking read after
write dependences in these style of loops.

1.6 Benchmarks

The benchmarks in the paper are carried out with an Intel Xeon E5-4650 (Sandy-
bridge) processor supporting the AVX SIMD instuction set. The programs used
are (1) pointwise sum of two arrays of 32 bit floating point numbers (2) hori-
zontal sum of an array of 32 bit floating point number (3) an n-body simulation
kernel (4) a regular matrix multiplication routine (5) a two dimensional five by
five stencil convolution written using REPA (6) ”blur” image processing exam-
ple included in REPA

The comparison is done between the IHRC compiler, GHC with the native
code generator as well as the GHC with the LLVM backend [TC10]. Benchmarks
are demonstrated in the Figure 1.5
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Run time normalized to Intel scalar (Intel scalar = 1)

Matrix Multiply NBody Vector Add Vector Sum Convolution Blur
W GHC 3.103658537 2.785547909 9.374823581 1.460823682 4.139505686 3.332035054
GHC LLVM 1.024390244 1.041362273 9.236022147 1.460325889 1.915044305 1.871470302
™ Intel SIMD 0.643292683 0.227633669 0.847464988 0.471443268 0.707604645 0.630963973

Figure 1.5: Benchmarks

As we can see from the figure, the IHRC compiler outperforms the sequential
code by a vast margin as well as the LLVM code(which has some support for
SIMD) by a decent margin. Future work would involve, more optimization
passes to inline and simplify the code further as well as better array bound
checks.
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Chapter 2

Exploiting Vector
Instructions with

Generalized Stream Fusion
by Mainland et al

2.1 Streams and Vector Instructions

In this chapter, we study an application of vectorization. This builds on the
previous paper of adding support for vectorization at the compiler level. This
current paper doesn’t speak at the level of the hardware or compiler, but rather
discusses about the ideal representation of data structures in Haskell, to utilize
the SIMD instructions.

The paper ”Exploiting Vector Instructions with Generalized Stream Fu-
sion” [MLP13] talks in detail about Stream Fusion [CLS07], something that
we touched on very briefly in a Section 1.3.1.

As this literature review, is targeted to be read from a generalist’s point of
view, we introduce basic idioms in Haskell on the way. The paper in general
doesn’t use any fancy Haskell features except maybe associated type [Cha+05],
which we try to explain in the given word limit. Interested readers are encour-
aged to read the cited paper for more details.

2.2 A very brief tour of Haskell

The most important aspect of Haskell we will be dealing with are ADTs or
algebraic data types. The terminologies are best described by the Figure 2.1
from the book Learn you a Haskell for great good [Lipll].

While Figure 2.1 describes a simple ADT, there exists various types of ADT's
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type constructor
data constructor

data Bool = False | True

data constructor

data declaration

Figure 2.1: Algebraic Data Type

as given in Figure 2.2

Enumeration:
data Season = Summer | Winter | Autumn | Spring

Product:
data Pair = Pair Int Int

Sum:
data Shape = Circle Float | Rect Float Float

Polymorfic & Recursive:
data Tree a = Leaf a | Node (Tree a) (Tree a)

Figure 2.2: Types of Algebraic Data Types

Apart from this the only other concept that we need are typeclasses [WB89]
which is something akin to interfaces in object oriented languages but more
powerful and ad-hoc. Eg:

class Eq a where
(==) :: a -> a -> Bool

where the a implies polymorphic type, which means any type Int or Bool or
anything else can be an instance of this typeclass.

2.3 Stream Fusion

In this section, we will look at the representation of streams and stream fusion in
more detail. The reason for that is, most high performance array based libraries

14



use a stream based representation to utilize this ”stream fusion” optimization.
And eventually the paper modifies the stream representation to utilize SIMD
registers as well.

The main issue is that compilers are not good at optimizing recursive func-
tions. As a result, a stream based representation is used, so that the functions
applied to the data structures are not recursive in nature.

data Stream a where

Stream :: (s -> Step s a) -> s -> Int -> Stream a
data Step s a = Yield a s
| Skip s
| Done

The paper takes the basic example of a map function over vectors from the
Data.Vector library, which looks like this:

map ::(a -> b) -> Vector a —> Vector b
map f = unstream . mapS f . stream

mapS :: (a -> b) -> Stream a -> Stream b
mapS f (Stream step s) = Stream step' s
where

step' s = case step s of
Yield x s' -> Yield (f x) s'
Skip s' -> Skip s'
Done -> Done

As we can see above the map function now doesn’t have a recursive structure,
and what we have gained is, when we are performing composition of functions
like mapf o mapg, we can substitute and see:

mapf omapg = unstream o mapS f o stream o unstream o mapSg o stream.

It is immediately obvious that stream ounstream by the law of composition
becomes identity. GHC supports something called rewrite rules [JTHO1] to
allow us to freely express these equations. Stream fusion utilizes this rule to
eliminate intermediate structures.

2.4 Bulk memory operations and SIMD

As discussed over the course of this entire literature survey, SIMD register are 2
or 4 or 8 or even 16 element wide. They prefer to work with multiple elements
at a time. If we look at the existing representation of the stream that is used,
it yrelds one element at a time and operates on those. This representation is
very bad for SIMD computations as well as bulk memory operations supported
in the hardware like memcpy or memset. A classic example is the vector append

15



operation which can easily utilize the memcpy function and also the replicate
function which would simply involve calling memset.

We use the example of dot product to demonstrate the usability of bulk
memory operations:

dotp :: Vector Double -> Vector Double -> Double
dotp v w = sum (zipWith (*) v w)

This is quite intuitive, we take two vectors, multiply each of their compo-
nents point-wise and then calculate the sum of those multiplications. Both the
zipWith function as well as the sum function are targets for vectorization.

So the present representation of streams are not suitable for use in SIMD
computations. We want a representation which yields multiple values at a time
(preferably equal to the width of the SIMD register) and in the last bout, when
there are not enough elements it yields a scalar stream of values called the ”drib-
ble”. There exists such a representation and like most problems in computer
science it is obtained by adding another level of indirection.

2.5 Generalized Stream Fusion

The generalized stream fusion framework introduced in the paper, utilizes a
representation which solves both the problem of bulk memory operations as
well as utilizing SIMD operations. It represents a stream just as a bundle of
stream.

data Bundle a = Bundle
{ sSize :: Size
, sElems :: Stream a
, sChunks :: Stream (Chunk a)
, sMultis :: Multis a}

The first field sSize denotes the size of the stream and the field sElems
represents the original stream as denoted by the type of the field.

The field sChunks enables the usage of bulk memory operations. So what
does a Chunk represent?

data Chunk a = Chunk Int (forall s. MutableVector s a -> ST s ())

The definition of Chunk while quite simple, contains some concepts which
are unfortunately outside the scope of this review. Importantly, it utilizes the
MutableVector type which provides a function called copyMVector which inter-
nally uses the memcpy instruction to copy the vector. This vector notably runs
inside the ST Monad [LP94] which uses the concept of thawing and freezing as
mentioned in the Section 1.3.1 to optimize the process.

While the Chunk representation works great for vector append, it is not the
best possible representation for operations like zip With, fold etc for which we

16



have the sElems field with the Stream representation. The next section is
entirely devoted on deriving the appropriate type of the sMultis field, called
Multis.

2.6 Working with SIMD computation

The paper uses the concept of associated types or type families [Cha+05] to
represent a SIMD value. Associated types are a relatively advanced type level
concept, and for some one very new to Haskell might be hard to grasp. But it
is essential, for understand this entire section. We try to explain it very briefly
below.

' D

Associated Types : The type system of Haskell allows us to perform a
powerful form of ad-hoc overloading using typeclasses. We might further
want to modify the data representation and algorithms at the type level,
and associated types provide exactly the support for that. A very moti-
vating use case of associated types was first given by Ralf Hinze [Hin00)
where the representation of the generalized trie depended on the type
level.

class MapKey k where
data Map k v —— the Associated type
empty :: Map k v
lookup :: k -=> Map k v > v

So depending on the instance the representation of the Map type would
vary like this:

instance MapKey Int where
data Map Int v = MapInt (Patricia.Dict v)
empty = MapInt Patricia.emptyDict
lookup k (MapInt d) = Patricia.lookupDict k d

instance MapKey () where
data Map () v = MapUnit (Maybe wv)
empty = MapUnit Nothing
lookup Unit Nothing = error "unknown key"
lookup Unit (Just v) = v

. etc

\. J

So given the description of the associated types above we can utilize them, to
model the representation of SIMD types. Specifically we want an associated type
Multi which would contain a short vector whose size is given by a multiplicity
function which is the width of the SIMD register. We also define specific function
definitions like multimap, multifold etc whose instances would operate on the

17



required size of the SIMD vector.

class MultiType a where
data Multi a -- A4ssociated type

multiplicity :: Multi a -> Int
multimap ::(a -> a) -> Multi a -> Multi a

The Multi a is the associated type which contains a vector (which would
have the appropriate width) of elements. However, when we have an odd number
of elements in the stream, there is an issue. We know the width is either 2, 4 or
8 (16 in case of AVX-512 supercomputers), so for an odd number of elements or
a non multiple of any of these element size, would cause an issue. So the paper
uses the Either type to encode either a Multi a or a simple scalar element a.

data Either a b = Left a | Right b
type MultisP a = Stream (Either a (Multi a))

It is named MultisP, the P because the producer chooses what will be yielded
at each step.

This representation works very well for sum, fold or any kind of reducing
operation however when we are dealing with zip operation a new issue arises.
A zip operation can be visualized like this:

zipWith (+) [1..10] [11..20]

1 2 3 4 5 6 7 8 910
+ 0+ + + + + + o+ o+ o+

11 12 13 14 15 16 17 18 19 20

[12,14,16,18,22,24,26,28,30]

It quite evident to notice that when we try to apply zipWith on a MultisP
type, if the producer 1 produces a Multi a and producer 2 produces a simple
a, they cannot be zipped. As a result of which we have to invert the control
and give the power to consumer, not the producer.

data MultisC a where
MultisC :: (s -> Step s (Multi a))
-> (s -> Step s a)
-> s
-> MultisC a

Again the full explanation of this type is beyond the scope of the review, but
it provides the consumer control to either yield a value of type Multi a given
by (s — Steps(Multia)), or a value of type a given by (s — Stepsa).

Now all we have to do is combine MutisP a and MultisC a to produce a
single type Multis a as defined in the original Bundle type.
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type Multis a = Either (MultisC a) (MultisP a)

This representation gives us a chance to specialize our implementation func-
tion based on the type that is most suitable for the appropriate function. For
something like mZipWith we use MultisC while for reduction operations we use
MultisP.

2.7 Benchmark

The paper goes ahead to show the implementation of the dot product algo-
rithm using the representation presented in the previous section. It provides
benchmarks compared to hand written C code executed with plain GCC as
well as GCC with support for SIMD instructions. Also competing is the Goto
BLAS implementation [GV08] which is the fastest known implementation. The
benchmark is ran on a 3.40GHz Intel i7-2600K processor, averaged over 100
runs.

—
L

B Hand-written C
B Hand-written C (SSE) |
I Vector library (SSE)
B Goto BLAS 1.13

—
[

—
—

—
=

Execution Time Ratio
5 © o ©
o ~1 oo =]

e
in

0.4 21 22 2_‘ 24 25 26 2? 28 29 2|02|12122132142|52|62172152]922‘022|2.’_2223224

Vector size (elements)

Figure 2.3: Benchmarks of GCC vs Goto BLAS vs GHC vs GCC with SIMD

2.8 Future Work and Conclusion

Over the span of this entire literature survey we saw how SIMD instructions
allow us to leverage the parallelism support provided by the hardware. As a
part of my summer thesis I will be extending GHC’s native code generator with
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support for SIMD instructions. There exists an alternate LLVM backend for
GHC[TC10], which has some support for SIMD instructions. But there are
certain other issues relating to register allocation in the LLVM backend, as a
result of which it is being rewritten as well [Sepl5]. The support for SIMD
instructions would allow commercial and industrial users of Haskell to utilize
these instructions to parallelize their code for free. We plan to provide basic
support for the instructions first and later research on other avenues of auto-
vectorization opportunities.
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