
Functional Programming
for Securing Cloud and
Embedded Environments

Abhiroop Sarkar
Chalmers University

My Research

“Securing Digital Systems
through Programming
Language Techniques”

My Research

“Securing Digital Systems
through Programming
Language Techniques”

My Research

“Securing Digital Systems
through Programming
Language Techniques”

My Research

“Securing Digital Systems
through Programming
Language Techniques”

Cloud Computing
- Multi-Tenant
- Large Trust Boundary

My Research

“Securing Digital Systems
through Programming
Language Techniques”

Embedded Systems
- Resource Constrained
- Reactive systems
- Time-bound systems

My Research

“Securing Digital Systems
through Programming
Language Techniques”

Stuxnet
computer worm

OS Remote Code
Execution

Detect vulnerable PLC
Driver otherwise hide

OS Remote Code
Execution

OS Remote Code
Execution

Attack Siemens
PLC 807 - 1210Hz

Detect vulnerable PLC
Driver otherwise hide

Stuxnet Impact

ATTACKER MODELS

Attacker Model 1

TRUST
in the OS and other low-level software

ATTACKER MODELS

Attacker Model 1 Attacker Model 2

TRUST MEMORY UNSAFETY
to accommodate resource constraintsin the OS and other low-level software

ATTACKER MODELS

Attacker Model 1 Attacker Model 2

TRUST MEMORY UNSAFETY
to accommodate resource constraintsin the OS and other low-level software

My Research

“Securing Digital Systems
through Programming
Language Techniques”

My Research

“Securing Digital Systems
through Programming
Language Techniques”

ATTACKER MODELS

Attacker Model 1 Attacker Model 2

in the OS and other low-level software
TRUST MEMORY UNSAFETY

to accommodate resource constraints

Contributions

Attacker Model 1 Attacker Model 2

for reducing trust on
low-level software

HasTEE+ SynchronVM
for memory-safe, soft real-time

embedded systems

HasTEE+
Part I

Haskell Symposium 2023 Under Submission ESORICS 2024

APP APP APP My
APP

Your trusted application

HARDWARE

HYPERVISOR

OPERATING
SYSTEM

OPERATING
SYSTEM

HARDWARE

HYPERVISOR

OPERATING
SYSTEM

OPERATING
SYSTEM

APP APP APP My
APP

Trusted
Computing

Base

language
runtime, libc

Hypervisor/OS Vulnerabilities

APP APP APP My
APP

Your trusted application

HARDWARE

HYPERVISOR

OPERATING
SYSTEM

OPERATING
SYSTEM

Your trusted application

HARDWARE

HYPERVISOR

OPERATING
SYSTEM

OPERATING
SYSTEM

 Untrusted Memory

HYPERVISOR

OPERATING
SYSTEM

OPERATING
SYSTEM

TEE

Trusted Execution Environments (TEE)

Trusted Code and Data

Data/Syscall Interface

 Untrusted Memory

HYPERVISOR

OPERATING
SYSTEM

OPERATING
SYSTEM

INTEL SGX

Trusted Execution Environments (TEE)

Trusted Code and Data

Data/Syscall Interface

Programming TEEs
ORIGINAL PROJECT

Programming TEEs
ORIGINAL PROJECT

Trusted
Project

Untrusted
Project

EDL

Restricted libc

Programming TEEs
ORIGINAL PROJECT

Trusted
Project

Untrusted
Project

EDL

Restricted libc

● Trampoline function
● Arcane Makefiles
● Complex data copying protocol
● Limited app porting (libc)

Distributed TEE Applications

EDL
EDL

EDL
EDL

AUTOMATIC PROGRAM PARTITIONING

TEE

AUTOMATIC PROGRAM PARTITIONING

INFORMATION FLOW CONTROL

TEE

Untrustworthy
input channels

Public output
channelsTEE

CSF ‘21

TCS ‘02

CCS ‘17

ATC ‘17

- Significantly changes base language/compiler/runtime

- “Most interesting dynamic properties of programs are
undecidable” (Rice’s theorem)

- Either lack information flow control or runtime
integration with TEEs or attestation support

HasTEE+

CLIENTS GHC Trusted

IFC

No compiler
modifications

Attestation

return :: a → m a

(>>=) :: m a → (a → m b) → m b

MONAD

return :: a → m a

(>>=) :: m a → (a → m b) → m b

MONAD
tainting

return :: a → m a

(>>=) :: m a → (a → m b) → m b

MONAD computation
builder

TAINT
TRACKING

return :: a → m a

(>>=) :: m a → (a → m b) → m b

MONAD

TAINT
TRACKING

ALTERNATE
SEMANTICS

Illustration : Password Checker

Enclave monad

App monad

Load code Load data

Remote
function
invocation

Remote function
application

DUMMY

COMPILE 1 COMPILE 2

Ekblad A, Claessen K. A seamless, client-centric programming model for type safe web applications. Haskell Symposium 2014.

Compilation 1 Compilation 2

INTEL SGX

GHC Trusted

DUMMY

Compilation 1 Compilation 2

INTEL SGX

GHC Trusted

DUMMY

DUMMY

COMPILE 1

COMPILE 2

Generalisation for multiple clients

Runtime
Dummy

COMPILE 3

Shen G, Kashiwa S, Kuper L. Haschor: Functional Choreographic Programming for All. ICFP 2023

Client
Enclave in

Malicious Cloud

Information Flow

Information Flow Control
Secret Trustworthy

Public Untrustworthy

Confidentiality Integrity

<S, U>

<P, T>

<S, T><P, U>

1. Denning, Dorothy E. "A lattice model of secure information flow." Communications of the ACM 19.5 (1976).
2. Biba, K.J. Integrity considerations for secure computer systems. Technical Report. April 1977.

Information Flow Control
<S, U>

<P, T>

<S, T><P, U>

Enclave

Client

Cloud
Provider

Information Flow Control
<S, U>

<P, T>

<S, T><P, U>

Enclave

Client

Cloud
Provider

Attesta
tion

De
cl
as
si
fic
at
io
n

Attestation

Haskell
Client

mbedtls
client Enclavembedtls

server

Intel RA-TLS

Hardware RoT

Attestation

Haskell
Client

mbedtls
client Enclavembedtls

server

Intel RA-TLS

Intel Attestation
Service

Hardware RoT

Attestation

Haskell
Client

mbedtls
client Enclavembedtls

server

Intel RA-TLS

Intel Attestation
Service

Hardware RoT

Attestation

Haskell
Client

mbedtls
client Enclavembedtls

server

Intel RA-TLS

Intel Attestation
Service

Hardware RoT

sign(m,
privK)

verify(m,
pubK)

Trusted

Information Flow

Trusted

Public Secret
Declassification

RA-TLS

Declassification

Enclave l p a

Labeled l a

1. Stefan D, Russo A, Mitchell JC, Mazières D. Flexible Dynamic Information flow control in Haskell. Haskell Symposium 2011.
2. Stefan, D., Russo, A., Mazières, D., & Mitchell, J. C. (2012). Disjunction Category Labels. NordSec 2011

Declassification

Enclave l p a

Labeled l a

Disjunction Category
Labels

Privileges or capabilities

1. Stefan D, Russo A, Mitchell JC, Mazières D. Flexible Dynamic Information flow control in Haskell. Haskell Symposium 2011.
2. Stefan, D., Russo, A., Mazières, D., & Mitchell, J. C. (2012). Disjunction Category Labels. NordSec 2011

Declassification

Enclave l p a

Labeled l a

Γ⊢ …L ⊔ Lcur
Floating
Label

Clearance

1. Stefan D, Russo A, Mitchell JC, Mazières D. Flexible Dynamic Information flow control in Haskell. Haskell Symposium 2011.
2. Stefan, D., Russo, A., Mazières, D., & Mitchell, J. C. (2012). Disjunction Category Labels. NordSec 2011

Declassification

Enclave l p a

Labeled l a

Γ⊢ …L ⊔ Lcur
Floating
Label

Clearance

1. Stefan D, Russo A, Mitchell JC, Mazières D. Flexible Dynamic Information flow control in Haskell. Haskell Symposium 2011.
2. Stefan, D., Russo, A., Mazières, D., & Mitchell, J. C. (2012). Disjunction Category Labels. NordSec 2011

Client1

Data Clean Room

Client2 Client3

d1 :: C1
d2 :: C2 /\ C3
d3 :: C1 \/ C2

Data Clean Room

f1C1 :: …
f2C2 :: …

Carries privilege to declassify C1

Client1

Data Clean Room

Client2 Client3

d1 :: C1
d2 :: C2 /\ C3
d3 :: C1 \/ C2

runQuery1 :: Priv p -> …
runQuery2 :: Priv p -> …

client1 = do
 …
 inEnclave (runQuery1 C1)

Client1

Data Clean Room

Client2 Client3

d1 :: C1
d2 :: C2 /\ C3
d3 :: C1 \/ C2

runQuery1 :: Priv p -o …
runQuery2 :: Priv p -o …

client1 = do
 …
 inEnclave (runQuery1 C1)

Linear arrow for “unforgeability”

Linear Haskell: Practical Linearity in a Higher-Order Polymorphic Language. Bernardy et al. POPL 2017

Client1

Data Clean Room

Client2 Client3

d1 :: C1
d2 :: C2 /\ C3
d3 :: C1 \/ C2

runQuery1 :: Priv p -o …
runQuery2 :: Priv p -o …

client1 = do
 …
 inEnclave (runQuery1 C1)

Who?
What?
Where?

Linear arrow for “unforgeability”

Declassification: Dimensions and Principles. Sabelfeld and Sands. Journal of Computer Security. 2009.

More case studies…

Federated Learning with TEEs
and homomorphic encryption

Data Clean Room with
differential privacy

Data Boundary

Performance Overheads

Gramine LibOS

 Gramine PAL

GHC Trusted
Runtime

Linux

glibc

Trusted Code
Base ~ 100K
LOCPatched

mmap, select,
etc

40 system calls
Shielded execution

TRUSTED APP

Trusted GHC

Tsai CC, Porter DE, Vij M. Graphene-SGX: A practical library {OS} for unmodified applications on {SGX}. Usenix ATC 2017.

Trusted GHC

LATENCY ~ 60 ms
vs

0.6 ms in native SDK

Part II
SynchronVM

ATTACKER MODELS

Attacker Model 1 Attacker Model 2

in the OS and other low-level software
TRUST MEMORY UNSAFETY

to accommodate resource constraints

ECOOP 2022 PPDP 2020

Bare-metal concurrentClocked

I/O-Bound

192 KB RAM
168 MHz clock

Programming Microcontrollers

Memory Unsafe

!Concurrentno real-time
constructs

I/O-Bound

ConcurrentTiming
aware

Virtual Machine

I/O-Bound

ConcurrentTiming
aware

● Categorical Abstract Machine
● Pointer-reversal GC
● Earliest-deadline-first based

real-time scheduler

Cousineau G, Curien PL, Mauny M. The Categorical Abstract Machine. Science of computer programming. 1987

Complete Synchron API

CML: A Higher-order Concurrent Language. John Reppy. PLDI 1991.

Complete Synchron API

CML: A Higher-order Concurrent Language. John Reppy. PLDI 1991.

syncT : Time -> Time -> Event a -> a

Relative Baseline Relative Deadline

Timed Synchronisation

syncT (msec 50) (msec 20) evt

Logical “now”
1. Berry G. The Foundations of Esterel. MIT Press 2000.
2. Nordlander J et al. Timber: A programming Language for Real-Time Embedded Systems. Technical Report 2002.

CASE STUDY

- Soft real-time
- ~440 Hz note

frequency

Measurements

(Bytes)

Button Blinky Power Usage

11 lines of code97 lines of code

3.5 mW

C with polling

2 mW

C with callback SynchronVM

Jitter and Precision

1 KHz Square Wave

Jitter and Precision

1 KHz Square Wave

Synchron/STM32F4C / Raspberry Pi

Contributions

Attacker Model 1 Attacker Model 2

for reducing trust on
low-level software

HasTEE+ SynchronVM
for memory-safe, soft real-time

embedded systems

“Securing Digital Systems
through Programming
Language Techniques”

Program Partitioning
(Papers I, II)

Information Flow
Control (Papers I, II)

Temporal
Programming

(Paper III)

Tierless Programming
(Paper II)

Structured
Concurrency
(Papers III, IV)

Resource Tracking
(Paper IV)

Purity (no
side-effects)

Monads Typeclasses
Higher
Order

Functions

Functional
Reactive

Programming

Higher-Order
Concurrency

Type-level
Program-

ming

“Securing Digital Systems
through Functional

Programming Abstractions”

Future Work

Future Work

Property-based
Attestation

□(p→◊q)∧□(q→□q)
Monitor

Future Work

Property-based
Attestation

□(p→◊q)∧□(q→□q)
Monitor

Model-checking
Synchron

Synchron
Bytecode Promela

ACKNOWLEDGEMENT
Thanks to Andrea Svensson for the cool logos.

ACKNOWLEDGEMENT
Thanks to Andrea Svensson for the cool logos.

Thanks to the SSF Octopi project for funding this research.

ACKNOWLEDGEMENT
Thanks to Andrea Svensson for the cool logos.

Thanks to my co-authors.

Thanks to the SSF Octopi project for funding this research.

Mary Joel Alejandro Robert Koen

CREDITS: This presentation template was
created by Slidesgo, and includes icons by

Flaticon, and infographics & images by Freepik

THANKS!
https://github.com/Abhiroop/HasTEE

https://github.com/SynchronVM/SynchronVM

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr
https://github.com/Abhiroop/HasTEE
https://github.com/SynchronVM/SynchronVM

