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Attacker Model 1 Attacker Model 2

in the OS and other low-level software
TRUST MEMORY UNSAFETY

to accommodate resource constraints



Contributions

Attacker Model 1 Attacker Model 2

for reducing trust on 
low-level software

HasTEE+ SynchronVM
for memory-safe, soft real-time 

embedded systems
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Programming TEEs
ORIGINAL PROJECT

Trusted 
Project

Untrusted 
Project

EDL

Restricted libc

● Trampoline function
● Arcane Makefiles
● Complex data copying protocol
● Limited app porting (libc)
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AUTOMATIC PROGRAM PARTITIONING

INFORMATION FLOW CONTROL

TEE

Untrustworthy 
input channels

Public output 
channelsTEE
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ATC ‘17



- Significantly changes base language/compiler/runtime

- “Most interesting dynamic properties of programs are 
undecidable” (Rice’s theorem)

- Either lack information flow control or runtime 
integration with TEEs or attestation support



HasTEE+

CLIENTS GHC Trusted

IFC

No compiler 
modifications

Attestation
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(>>=) :: m a → (a → m b) → m b

MONAD

TAINT 
TRACKING

ALTERNATE 
SEMANTICS



Illustration : Password Checker
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App monad



Load code Load data





Remote 
function 
invocation

Remote function 
application







DUMMY

COMPILE 1 COMPILE 2

Ekblad A, Claessen K. A seamless, client-centric programming model for type safe web applications. Haskell Symposium 2014.
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DUMMY

COMPILE 1

COMPILE 2

Generalisation for multiple clients

Runtime
Dummy

COMPILE 3

Shen G, Kashiwa S, Kuper L. Haschor: Functional Choreographic Programming for All. ICFP 2023
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Information Flow Control
Secret Trustworthy

Public Untrustworthy

Confidentiality Integrity

<S, U>

<P, T>

<S, T><P, U>

1. Denning, Dorothy E. "A lattice model of secure information flow." Communications of the ACM 19.5 (1976).
2. Biba, K.J. Integrity considerations for secure computer systems. Technical Report. April 1977.
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Attestation

Haskell 
Client

mbedtls 
client Enclavembedtls

server

Intel RA-TLS

Intel Attestation 
Service

Hardware RoT

sign(m, 
privK)

verify(m, 
pubK)



Trusted

Information Flow

Trusted

Public Secret
Declassification

RA-TLS



Declassification

Enclave l p a

Labeled l a 

1. Stefan D, Russo A, Mitchell JC, Mazières D. Flexible Dynamic Information flow control in Haskell. Haskell Symposium 2011.
2. Stefan, D., Russo, A., Mazières, D., & Mitchell, J. C. (2012). Disjunction Category Labels. NordSec 2011
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Enclave l p a

Labeled l a 

Disjunction Category 
Labels

Privileges or capabilities

1. Stefan D, Russo A, Mitchell JC, Mazières D. Flexible Dynamic Information flow control in Haskell. Haskell Symposium 2011.
2. Stefan, D., Russo, A., Mazières, D., & Mitchell, J. C. (2012). Disjunction Category Labels. NordSec 2011
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1. Stefan D, Russo A, Mitchell JC, Mazières D. Flexible Dynamic Information flow control in Haskell. Haskell Symposium 2011.
2. Stefan, D., Russo, A., Mazières, D., & Mitchell, J. C. (2012). Disjunction Category Labels. NordSec 2011
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Data Clean Room

Client2 Client3

d1 :: C1
d2 :: C2 /\ C3
d3 :: C1 \/ C2

runQuery1  :: Priv p -o …
runQuery2 :: Priv p -o …

client1 = do
    …
    inEnclave (runQuery1 C1)

Linear arrow for “unforgeability”

Linear Haskell: Practical Linearity in a Higher-Order Polymorphic Language. Bernardy et al. POPL 2017



Client1

Data Clean Room

Client2 Client3

d1 :: C1
d2 :: C2 /\ C3
d3 :: C1 \/ C2

runQuery1  :: Priv p -o …
runQuery2 :: Priv p -o …

client1 = do
    …
    inEnclave (runQuery1 C1)

Who?
What?
Where?

Linear arrow for “unforgeability”

Declassification: Dimensions and Principles. Sabelfeld and Sands. Journal of Computer Security. 2009.



More case studies…

Federated Learning with TEEs 
and homomorphic encryption

Data Clean Room with 
differential privacy

Data Boundary



Performance Overheads



Gramine LibOS
   -------------------
    Gramine PAL

GHC Trusted 
Runtime

Linux

glibc

Trusted Code 
Base ~ 100K 
LOCPatched 

mmap, select, 
etc

40 system calls
Shielded execution

TRUSTED APP

Trusted GHC

Tsai CC, Porter DE, Vij M. Graphene-SGX: A practical library {OS} for unmodified applications on {SGX}. Usenix ATC 2017.



Trusted GHC

LATENCY ~ 60 ms
vs

0.6 ms in native SDK
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Attacker Model 1 Attacker Model 2

in the OS and other low-level software
TRUST MEMORY UNSAFETY

to accommodate resource constraints
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Bare-metal concurrentClocked

I/O-Bound

192 KB RAM
168 MHz clock



Programming Microcontrollers

Memory Unsafe

!Concurrentno real-time 
constructs



I/O-Bound

ConcurrentTiming
aware

Virtual Machine



I/O-Bound

ConcurrentTiming
aware

● Categorical Abstract Machine
● Pointer-reversal GC
● Earliest-deadline-first based 

real-time scheduler

Cousineau G, Curien PL, Mauny M. The Categorical Abstract Machine. Science of computer programming. 1987



Complete Synchron API

CML: A Higher-order Concurrent Language. John Reppy. PLDI 1991.



Complete Synchron API

CML: A Higher-order Concurrent Language. John Reppy. PLDI 1991.



syncT : Time -> Time -> Event a -> a 

Relative Baseline Relative Deadline

Timed Synchronisation



syncT  (msec 50) (msec 20) evt 

Logical “now”
1. Berry G. The Foundations of Esterel. MIT Press 2000.
2. Nordlander J et al. Timber: A programming Language for Real-Time Embedded Systems. Technical Report 2002.



CASE STUDY

- Soft real-time
- ~440 Hz note 

frequency



Measurements

(Bytes)



Button Blinky Power Usage

11 lines of code97 lines of code

3.5 mW

C with polling

2 mW

C with callback SynchronVM



Jitter and Precision

1 KHz Square Wave



Jitter and Precision

1 KHz Square Wave

Synchron/STM32F4C / Raspberry Pi
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Program Partitioning
(Papers I, II)

Information Flow 
Control (Papers I, II)

Temporal 
Programming 

(Paper III)

Tierless Programming 
(Paper II)

Structured 
Concurrency 
(Papers III, IV)

Resource Tracking
(Paper IV)

Purity (no 
side-effects)

Monads Typeclasses
Higher 
Order 

Functions

Functional 
Reactive 

Programming

Higher-Order 
Concurrency

Type-level 
Program-

ming
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Property-based 
Attestation

□(p→◊q)∧□(q→□q)
Monitor

Model-checking 
Synchron

Synchron
Bytecode Promela
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