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Microsoft Security Bulletin MS10-046 - Critical

Vulnerability in Windows Shell Could Allow Remote
Code Execution (2286198)

Microsoft Security Bulletin MS10-061 - Critical

Vulnerability in Print Spooler Service Could Allow
Remote Code Execution (2347290)
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Stuxnet Impact

Rootkit.Win32.Stuxnet geography

BN 0-1310 MW 1310-2,620

Number of users

2,620-3,930 W 3930-5240 MW 5240-86,550
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HasTEE: Programming Trusted Execution
Environments with Haskell

Abhiroop Sarkar
Chalmers University
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Abstract

Trusted Execution Environments (TEEs) are hardware en-
forced memory isolation units, emerging as a pivotal security
solution for security-critical applications. TEEs, like Intel
SGX and ARM TrustZone, allow the isolation of confidential
code and data within an untrusted host environment, such as
the cloud and IoT. Despite strong security guarantees, TEE
adoption has been hindered by an awkward programming
model. This model requires manual application partitioning
and the use of error-prone, memory-unsafe, and potentially
information-leaking low-level C/C++ libraries.

We address the above with HasTEE, a domain-specific lan-
guage (DSL) embedded in Haskell for programming TEE
applications. HasTEE includes a port of the GHC runtime
for the Intel-SGX TEE. HasTEE uses Haskell's type system
to automatically partition an application and to enforce In-
formation Flow Control on confidential data. The DSL, being
embedded in Haskell, allows for the usage of higher-order
functions, monads, and a restricted set of 1/O operations to
write any standard Haskell application. Contrary to previous
work, HasTEE is lightweight, simple, and is provided as a
simple security library; thus avoiding any GHC modifications.
We show the applicability of HasTEE by implementing case
studies on federated learning, an encrypted password wallet,
and a differentially-private data clean room.
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Chalmers University
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Gothenburg, Sweden

koen@chalmers.se

Keywords: Trusted Execution Environment, Haskell, Intel
SGX, Enclave

ACM Reference Format:

Abhiroop Sarkar, Robert Krook, Alejandro Russo, and Koen Claessen.

2023. HasTEE: Programming Trusted Execution Environments with
Haskell. In Proceedings of the 16th ACM SIGPLAN International
Haskell Symposium (Haskell '23), September 8-9, 2023, Seattle, WA,
USA. ACM, New York, NY, USA, 19 pages. https://doi.org/10.1145,

3609026.3609731

1 Introduction

Trusted Execution Environments (TEEs) are an emerging
design of hardware-enforced memory isolation units that aid
in the construction of security-sensitive applications [Mulli-
gan et al. 2021; Schneider et al. 2022]. TEEs have been used
to enforce a strong notion of trust in areas such as confi-
dential (cloud-)computing [Baumann et al. 2015; Zegzhda
et al. 2017], IoT [Lesjak et al. 2015] and Blockchain [Bao et al.
2020]. Intel and ARM each have their own TEE implementa-
tions known as Intel SGX [Intel 2015] and ARM TrustZone
[ARM 2004], respectively. Principally, TEEs provide a disjoint
region of code and data memory that allows for the physical
isolation of a program'’s execution and state from the under-
lying operating system, hypervisor, and I/O peripherals. For
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HasTEE*: Confidential Cloud Computing and
Analytics with Haskell
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Abstract. Confidential computing is a security paradigm that enables
the protection of confidential code and data in a co-tenanted cloud de-
ployment using specialized hardware isolation units called Trusted E
cution Environments (TEEs). By integrating TEEs with a Remote Attes-
tation protocol, confidential computing allows a third party to establish
the integrity of an enclave hosted within an untrusted cloud. However,
TEE solutions, such as Intel SGX and ARM TrustZone, offer low-level
ased toolchains that are susceptible to inherent memory safety
s and lack language constructs to monitor explicit and im-
plicit information-flow leaks. Moreover, the toolchains involve complex
multi-project hierarchies and the deployment of hand-written attestation
protocols for verifying enclave integrity.
We address the above with HasTEE™, a domain-specific language (DSL)
embedded in Haskell that enables programming TEEs in a high-level lan-
guage with strong type-safety. HasTEE™ assists in multi-tier cloud appli-
cation development by (1) introducing a tierless programming model for
expressing distributed client-server interactions as a single program, (2)
integrating a general remote-attestation architecture that removes the
necessity to write application-specific cross-cutting attestation code, and
(3) employing a dynamic information flow control mechanism to prevent
explicit as well as implicit data leaks. We demonstrate the practicality of
HasTEE™ through a case study on confidential data analytics, present-
ing a data-sharing pattern applicable to mutually distrustful participants
and providing overall performance metrics.

Keywords: Confidential Computing - Trusted Computing - Trusted Ex-
ecution Environments - Information Flow Control - Attestation - Haskell.
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Hypervisor/OS Vulnerabilities

Hyper-V bug that could crash 'big portions of
Azure cloud infrastructure': Code published

Now patched - “Most serious” Linux privilege-escalation bug

dereference |

e s €VET 1S UNder active exploit (updated)

Lurking in VULNERABILITIES

“ Decade-0ld VENOM Bug Exposes Virtualized
Environments to Attacks
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Critical Xen hypervisor flaw endangers
virtualized environments

NETWORK SECURITY

Microsoft Ships Urgent Fixes for Critical Flaws in
Windows Kerberos, Hyper-V

Patch 1

The vulnera

Hypervisor security flaw could expose AWS, Azure
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Programming TEEs
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- Significantly changes base language/compiler/runtime

- “Most interesting dynamic properties of programs are
undecidable” (Rice's theorem)

- Either lack information flow control or runtime
integration with TEEs or attestation support
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lllustration : Password Checker



pwdChkr :: Enclave String -> String -> Enclave Bool

pwdChkr pwd guess = fmap (== guess) pwd

Enclave monad



passwordChecker ::

passwordChecker = do
passwd <- inEnclaveConstant "secret”
efunc <- inEnclave $ pwdChkr passwd




passwordChecker :: App Done

passwordChecker = do

passwd <-CinEnclaveConstant >"secret”

Load code Load data



passwordChecker :: App Done
passwordChecker = do
passwd <- inEnclaveConstant "secret”

efunc <- inEnclave $ pwdChkr passwd
runClient S do -- Client code
1iftI0O $ putStrLn "Enter your password”
userInput <- 1iftIO getlLine
res <- gateway (efunc <@> userInput)
1iftI0 § putStrLn ("Login returned " ++ show res)

main = runApp passwordChecker



pwdChkr :: Enclave String -> String -> Enclave Bool
pwdChkr pwd guess = fmap (== guess) pwd

passwordChecker :: App Done
passwordChecker = do
Remote passwd <- inEnclaveConstant "secret"”
function efunc <- inEnclave $ pwdChkr passwd

invocation runClient $ do -- Client code

Remote funct
application

1iftI0 § putStrLn ("Login returned " ++ show res)

main = runApp passwordChecker



pwdChkr :: Enclave String -> String -> Enclave Bool
pwdChkr pwd guess = fmap (== guess) pwd

passwordChecker :: App Done
passwordChecker = do
passwd <- inEnclaveConstant "secret”
efunc <- inEnclave $ pwdChkr passwd
runClient $§ do -- Client code
1iftI0 $ putStrLn "Enter your password"
userInput <- 1iftIO getlLine
res <- gateway (efunc <@> userInput)
1iftI0O $§ putStrLn ("Login returned " ++ show res)

main = runApp passwordChecker






COMPILE 1

DUMMY

COMPILE 2

Ekblad A, Claessen K. A seamless, client-centric programming model for type safe web applications. Haskell Symposium 2014.



Compilation 1 Compilation 2

-- Enclave
pwdChkr :: Enclave String -> String -> Enclave Bool

pwdChkr pwd guess = fmap (== guess) pwd

passwordChecker :: App Done
passwordChecker = do
passwd <- inEnclaveConstant "secret”
efunc <- inEnclave $ pwdChkr passwd

return DONE\ DU M MY

-- wait for calls from Client
main = runApp passwordChecker

GHC Trustedﬁ

INTEL SGX



Compilation 1

-- Enclave

pwdChkr :: Enclave String -> String -> Enclave Bool
pwdChkr pwd guess = fmap (== guess) pwd

passwordChecker :: App Done
passwordChecker = do

passwd <- inEnclaveConstant "secret”

efunc <- inEnclave $ pwdChkr passwd
return DONE

-- wait for calls from Client
main = runApp passwordChecker

GHC Trusted#

INTEL SGX

Compilation 2

-- Client
pwdChkr = -- gets optimised away
passwordChecker :: App Done

passwordChecker = do
passwd <- return Dummy
efunc <- inEnclave $ -- ignores pwdChkr body
runClient § do -- Client code

1iftI0 $ putStrLn "Enter your password"

use
res

1iftI0 $§ putStrLn ("Login returned "

rInput <- 1liftIO getLine

DUMMY

<- gateway (efunc <@> userInput)

-- drives the application

main

runApp passwordChecker

++ show res)



Generalisation for multiple clients

COMPILE 1

| compi

LE 2

DUMMY

Runtime

Dummy

COMPILE 3

Shen G, Kashiwa S, Kuper L. Haschor: Functional Choreographic Programming for All. ICFP 2023
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Information Flow Control

<S, U>
Secret Trustworthy
<P7 u> <S, ™
Public Untrustworthy
Confidentiality Integrity <. 1>

1.  Denning, Dorothy E. "A lattice model of secure information flow." Communications of the ACM 19.5 (1976).
2. Biba, K.J. Integrity considerations for secure computer systems. Technical Report. April 1977.
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Attestation

Hardware RoT

Intel RA-TLS

F‘ /‘ X.509 public key (PK) (\Q\ ‘
Q X.509 cert <«—Self-signed certificate ver1fy(m,
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RA-TLS pu b K)
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certificate

(DCAP-based)

VERSION = 1..

SGX Report (EREPORT)

REPORTDATA = hash(‘Q\) <+—Compare PK against this hash

- Measurements ... <+—Must verify against expected
° Intel SGX certs = = <«—Must verify against Intel PCS
I ntel AtteStatlo n r[_fg provided attestation certificates
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Declassification

Enclavel p a

Labeled |l a

1. Stefan D, Russo A, Mitchell JC, Mazieres D. Flexible Dynamic Information flow control in Haskell. Haskell Symposium 20T11.
2. Stefan, D, Russo, A., Mazieres, D., & Mitchell, J. C. (2012). Disjunction Category Labels. NordSec 2011



Declassification

Disjunction Category

L abels
Enclave )

Privileges or capabilities

Labeled |l a

1. Stefan D, Russo A, Mitchell JC, Mazieres D. Flexible Dynamic Information flow control in Haskell. Haskell Symposium 20T11.
2. Stefan, D, Russo, A., Mazieres, D., & Mitchell, J. C. (2012). Disjunction Category Labels. NordSec 2011



Declassification

Enclavel p a

Labeled |l a

Clearance

Floati
oating L u Lcur rl_ ~

1. Stefan D, Russo A, Mitchell JC, Mazieres D. Flexible Dynamic Information flow control in Haskell. Haskell Symposium 20T11.
2. Stefan, D, Russo, A., Mazieres, D., & Mitchell, J. C. (2012). Disjunction Category Labels. NordSec 2011



Declassification

Enclavel p a

Labeled |l a

Clearance
Floating # LulL?l r|_
Label cur

1. Stefan D, Russo A, Mitchell JC, Mazieres D. Flexible Dynamic Information flow control in Haskell. Haskell Symposium 20T11.
2. Stefan, D, Russo, A., Mazieres, D., & Mitchell, J. C. (2012). Disjunction Category Labels. NordSec 2011
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Data Clean Room

ﬂCl ee __.Carries privilege to declassify CI

fzc2 22 eee



Data Clean Room

runQueryl : Privp -> ..

@ D runQuery?2 :: Priv p -> ...
dl: Cl .
d2:C2/\C3 clientl = do
d3:C1\V/C2
@ ) inEnclave (runQuery1 C1)

|
@

C:Iient1 (:Iient2 Client3




Data Clean ROOm Linear arrow for “unforgeability”

runQueryl : Priv p fc?

@ D runQuery2 :: Priv p -0 ...
dl: Cl .
d2:C2/\C3 clientl = do
d3:C1\V/C2
@ ) inEnclave (runQuery1 C1)

|
@

C:Iient1 (:Iient2 Client3

Linear Haskell: Practical Linearity in a Higher-Order Polymorphic Language. Bernardy et al. POPL 2017



Data Clean ROOm Linear arrow for “unforgeability”

runQueryl : Priv p fc?

@ D runQuery2 :: Priv p -0 ...
dl: Cl .
d2:C2/\C3 clientl = do
d3:C1\V/C2
@ ) inEnclave (runQuery1 C1)
Who?
What?

Where?

|
@

C:Iient1 (:Iient2 Client3

Declassification: Dimensions and Principles. Sabelfeld and Sands. Journal of Computer Security. 2009.



More case studies...
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Federated Learning with TEEs Data Clean Room with
and homomorphic encryption differential privacy




Performance Overheads

HasTEE* Performance Overheads

Without IFC

With IFC

Without RA

Without integrity check

With integrity check

200 400 600 800
Mean Response Time (milliseconds; 50 runs)

O -



Trusted GHC

Trusted Code
1 Base ~ 100K

Patched LO

mmap, select,
etc

40 system calls
Shielded execution

Tsai CC, Porter DE, Vij M. Graphene-SCX: A practical library {OS} for unmodified applications on {SGX}. Usenix ATC 2017.



Trusted GHC

Memory RSS Virtual Size Disk Swap

Atrest 19,132 KB 287,920 KB 0 KB

Peak 20,796 KB 290,032KB 0 KB

LATENCY ~ 60 ms
"

0.6 ms in native SDK







\ )\

- Partil @

SynchronVM




ATTACKER MODELS

Attacker Model 1 Attacker Model 2
A
C‘\ i of
u oy
TRUST MEMORY UNSAFETY

in the OS and other low-level software to accommodate resource constraints




Synchron - An APl and Runtime for Embedded
Systems

Abhiroop Sarkar &

Chalmers University, Sweden
Bo Joel Svensson &
Chalmers University, Sweden

Mary Sheeran &

Chalmers University, Sweden

—— Abstract

Programming embedded systems applications involves writing concurrent, event-driven and
timing-aware programs. Traditionally, such programs are written in low-level machine-oriented
programming languages like C or Assembly. We present an alternative by introducing Synchron, an
API that offers high-level abstractions to the programmer while supporting the low-level infrastructure
in an associated runtime system and one-time-effort drivers.

Embedded systems applications exhibit the general characteristics of being (i) concurrent, (ii)
I/O-bound and (iii) timing-aware. To address each of these concerns, the Synchron API consists
of three components - (1) a Concurrent ML (CML) inspired message-passing concurrency model,
(2) a message-passing-based 1/0 interface that translates between low-level interrupt based and
memory-mapped peripherals, and (3) a timing operator, syncT, that marries CML’s sync operator
with timing windows inspired from the TinyTimber kernel.

We implement the Synchron API as the bytecode instructions of a virtual machine called
SynchronVM. SynchronVM hosts a Caml-inspired functional language as its frontend language, and
the backend of the VM supports the STM32F4 and NRF52 microcontrollers, with RAM in the order
of hundreds of kilobytes. We illustrate the expressiveness of the Synchron API by showing examples
of expressing state machines commonly found in embedded systems. The timing functionality
is demonstrated through a music programming exercise. Finally, we provide benchmarks on the
response time, jitter rates, memory, and power usage of the SynchronVM.

2012 ACM Subject Classification Computer systems organization — Embedded software; Software
and its engineering — Runtime environments; Computer systems organization — Real-time languages;
Software and its engineering — Concurrent programming languages

ECOOP 2022

Hailstorm : A Statically-Typed, Purely Functional Language for
loT Applications

Abhiroop Sarkar
sarkara@chalmers.se
Chalmers University
Gothenburg, Sweden

ABSTRACT

With the growing ubiquity of Internet of Things (IoT), more complex
logic is being programmed on resource-constrained IoT devices,
almost exclusively using the C programming language. While C
provides low-level control over memory, it lacks a number of high-
level programming abstractions such as higher-order functions,
polymorphism, strong static typing, memory safety, and automatic
memory management.

We present Hailstorm, a statically-typed, purely functional pro-
gramming language that attempts to address the above problem.
It is a high-level programming language with a strict typing disci-
pline. It supports features like higher-order functions, tail-recursion,
and automatic memory management, to program IoT devices in
a declarative manner. Applications running on these devices tend
to be heavily dominated by I/O. Hailstorm tracks side effects like
I/O in its type system using resource types. This choice allowed us
to explore the design of a purely functional standalone language,
in an area where it is more common to embed a functional core
in an imperative shell. The language borrows the combinators of
arrowized FRP, but has discrete-time semantics. The design of the
full set of combinators is work in progress, driven by examples.
So far, we have evaluated Hailstorm by writing standard examples
from the literature (earthquake detection, a railway crossing system
and various other clocked systems), and also running examples on
the GRiSP embedded systems board, through generation of Erlang.

CCS CONCEPTS

- Software and its engineering — Compilers; Domain spe-
cificl ges; - Comp yst organization — Sensors
and actuators; Embedded software.

Mary Sheeran
mary.sheeran@chalmers.se
Chalmers University
Gothenburg, Sweden

September 8-10. 2020, Bologna, Italy. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3414080.3414092

1 INTRODUCTION

As the density of 10T devices and diversity in IoT applications con-
tinue to increase, both industry and academia are moving towards
decentralized system architectures like edge computing [38]. In edge
computation, devices such as sensors and client applications are
provided greater computational power, rather than pushing the
data to a backend cloud service for computation. This results in
improved response time and saves network bandwidth and energy
consumption [50]. In a growing number of applications such as
aeronautics and automated vehicles, the real-time computation is
more robust and responsive if the edge devices are compute capable.

In a more traditional centralized architecture, the sensors and
actuators have little logic in them; they rather act as data relaying
services. In such cases, the firmware on the devices is relatively sim-
ple and programmed almost exclusively using the C programming
language. However with the growing popularity of edge computa-
tion, more complex logic is moving to the edge IoT devices. In such
circumstances, programs written using C tend to be verbose, error-
prone and unsafe [17, 27). Additionally, IoT applications written
in low-level languages are highly prone to security vulnerabilities
[7,58].

Hailstorm is a domain-specific language that attempts to ad-
dress these issues by bringing ideas and abstractions from the
functional and reactive programming communities to program-
ming IoT applications. Hailstorm is a pure, statically-typed func-
tional programming language. Unlike impure functional languages
like ML and Scheme, Hailstorm restricts arbitrary side-effects and

PPDP 2020
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Categorical Abstract Machine
e Pointer-reversal GC

e FEarliest-deadline-first based
real-time scheduler

Cousineau G, Curien PL, Mauny M. The Categorical Abstract Machine. Science of computer programming. 1987



Complete Synchron API

spawn : (() -> ()) -> ThreadId
channel : () -> Channel a
send : Channel a -> a -> Event ()
recv : Channel a -> Event a
choose : Event a -> Event a -> Event a
wrap . Event a -> (a -> b) -> Event b
sync : Event a -2 @
mm) syncT : Time -> Time -> Event a -> a

‘spawnExternal : Channel a -> Driver -> ExternalThreadld

CML: A Higher-order Concurrent Language. John Reppy. PLDI 1991.



Complete Synchron API

spawn : (() -> ()) -> ThreadlId
channel : () -> Channel a
send : Channel a -> a -> Event ()
recv : Channel a -> Event a
choose : Event a -> Event a -> Event a
wrap . Event a -> (a -> b) -> Event b
sync : Event a -2 @
mm) syncT : Time -> Time -> Event a -> a

Em) spawnExternal : Channel a>->@river>-> ExternalThreadId

CML: A Higher-order Concurrent Language. John Reppy. PLDI 1991.



Timed Synchronisation

syncT :->-> Eventa->a

Relative Baseline Relative Deadline



syncT (msec 50) (msec 20) evt

20 msec
50 msec
> sync evt
l l R
| |
Now Baseline Deadline

Logical “now”

1.  Berry G. The Foundations of Esterel. MIT Press 2000.
2. Nordlander J et al. Timber: A programming Language for Real-Time Embedded Systems. Technical Report 2002.
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Button Blinky Power Usage
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Jitter and Precision

while (1) { ledchan = channel ()
uint32_t state = GPIO_READ(23);
if (state) { foo : Int -> ()
GPIO_CLR(23); foo val =
} else { let _ = syncT 500 0 (send ledchan val)
GPIO_SET(23); in foo (not val)
}
usleep(400); main =
} let _ = spawnExternal ledchan 1
// main method and other setup elided in foo 1

1 KHz Square Wave



Jitter and Precision

Display
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