Programming Trusted Execution
o Environments with Haskell g

Authors

Alejandro Russo Koen Claessen

Cloud Deployments

OPERATING OPERATING
SYSTEM SYSTEM

HARDWARE

Cloud Deployments

Trusted
Computing
Base

.

HARDWARE

v

OS Vulnerabilities

Vulnerability Total || core | drivers | net | fs | sound

)

Missing pointer check
Missing permission check
Buffer overflow

Integer overflow
Uninitialized data

Null dereference

Divide by zero

Infinite loop

Data race / deadlock
Memory mismanagement 10
Miscellaneous

(SNSRI SEVCES I NN IS IS
R m W

Bmm = O W00 N =

NO—O =N D

O~~~ oW
No—~oco~omvw~=nOO

w

Figure 2: Vulnerabilities (rows) vs. locations (columns).

Linux kernel vulnerabilities: State-of-the-art defenses and
open problems. Mao et al. In Proceedings of the Second
Asia-Pacific Workshop on Systems (pp. 1-5).

Characterizing hypervisor vulnerabilities in cloud computing
servers. Perez-Botero et al. In Proceedings of the 2013
international workshop on Security in cloud computing.

Cloud Deployments

OPERATING OPERATING -~
SYSTEM SYSTEM
¥

HARDWARE

Cloud Deployments

4 2 . ¥
OPERATING OPERATING -~

SYSTEM SYSTEM
¥

HARDWARE

Trusted Execution Environment (TEE)

4

¥

HARDWARE TEE

Trusted Execution Environment (TEE)

arm
TRUSTZONE

RISC

Physical Memory
Protection

bu [==
- AMD
___|| SEV-SNP

Programming TEEs

Programming TEEs

Original Project

e

Untrusted Trusted
Project Project

Programming TEEs

Original Project

e

Untrusted Trusted
Project Project

Programming TEEs

Original Project

e

Untrusted Trusted
Project Project

EDL
e Trampoline functions

e Arcane Makefiles
e (Complex data copying protocol

ALTERNATE APPROACHES

Secured Routines:

Language-based Construction of Trusted Execution Environments

Abstract

Trusted Execution
enclaves, use hard
tegrity of operatiol
is available on mg

gramming model 4

/

Language Support for Secure Software Development
with Enclaves

Aditya Oak Amir M. Ahmadian

TU Darmstadt ~ KTH Royal Institute of Technology =~ KTH Royal Institute of Technology

Abstract—Confidential computing is a promising technology
for securing code and data-in-use on untrusted host machines,
e.g., the cloud. Many hardware vendors offer different imple-
mentations of Trusted Execution Environments (TEEs). A TEE
is a hardware protected execution environment that allows
performing confidential computations over sensitive data on
untrusted hosts. Despite the appeal of achieving strong security
guarantees against low-level attackers, two challenges hinder
the adoption of TEEs. First, developing software in high-level
managed languages, e.g., Java or Scala, taking advantage of
existing TEEs is complex and error-prone. Second, partitioning

Musard Balliu Guido Salvaneschi

University of St.Gallen

First, seamless integration of enclave programming into
software applications remains challenging. For example, Intel
provides a C/C++ interface to the SGX enclave but no direct
support is available for managed languages. As managed
languages like Java and Scala are extensively used for
developing distributed applications, developers need to either
interface their programs with the C++ code executing in the
enclave (e.g., using the Java Native Interface [12]) or compile
their programs to native code (e.g., using Java Native [13])

Golang & Java APPROACHES

Language extension PROGRAM

Parser modification PARSER

COMPIL-

Data flow/Control ATION
flow analysis PIPELINE

Runtime modification —m

</>

HasTEE

HasTEE
- No compiler
modifications*

IFC

m—

UNTRUSTED GHC Trusted

*Ekblad, A. and Claessen, K. A seamless, client-centric programming model for type safe web applications.
Haskell Symposium, 2014.

HasTEE Key Contributions

° with

e Program in a high-level language -
e Enforce on data
within enclaves

Illustration : Password Checker

pwdChkr :: Enclave String -> String -> Enclave Bool

pwdChkr pwd guess = fmap (== guess) pwd

pwdChkr :: Enclave String -> String -> Enclave Bool

pwdChkr pwd guess = fmap (== guess) pwd

The Enclave
monad

pwdChkr :: Enclave String -> String -> Enclave Bool
pwdChkr pwd guess = fmap (== guess) pwd

passwordChecker :: App Done

pwdChkr :: Enclave String -> String -> Enclave Bool
pwdChkr pwd guess = fmap (== guess) pwd

passwordChecker :: App Done

The App monad

pwdChkr :: Enclave String -> String -> Enclave Bool
pwdChkr pwd guess = fmap (== guess) pwd

passwordChecker :: App Done
passwordChecker = do
passwd <- inEnclaveConstant "secret”

inEnclaveConstant :: a » (a)

pwdChkr :: Enclave String -> String -> Enclave Bool
pwdChkr pwd guess = fmap (== guess) pwd

passwordChecker :: App Done
passwordChecker = do
passwd <- inEnclaveConstant "secret”
efunc <- inEnclave $§ pwdChkr passwd

inEnclave :: (Securable a) => a ~» (a)

pwdChkr :: Enclave String -> String -> Enclave Bool
pwdChkr pwd guess = fmap (== guess) pwd

passwordChecker :: App Done
passwordChecker = do
passwd <- inEnclaveConstant "secret”
efunc <- inEnclave $§ pwdChkr passwd
runClient § do -- Client code

pwdChkr :: Enclave String -> String -> Enclave Bool
pwdChkr pwd guess = fmap (== guess) pwd

passwordChecker :: App Done
passwordChecker = do
passwd <- inEnclaveConstant "secret”
efunc <- inEnclave $§ pwdChkr passwd
runClient § do -- Client code

The Client
monad

pwdChkr :: Enclave String -> String -> Enclave Bool
pwdChkr pwd guess = fmap (== guess) pwd

passwordChecker :: App Done
passwordChecker = do
passwd <- inEnclaveConstant "secret”
efunc <- inEnclave $ pwdChkr passwd
runClient § do -- Client code
1iftI0 $ putStrLn "Enter your password"
userInput <- 1iftIO getlLine

pwdChkr :: Enclave String -> String -> Enclave Bool
pwdChkr pwd guess = fmap (== guess) pwd

passwordChecker :: App Done
passwordChecker = do
passwd <- inEnclaveConstant "secret”
efunc <- inEnclave $ pwdChkr passwd

runClient $§ do -- Client code
1iftI0 $ putStrLn "Enter your password"
userInput <- 1iftIO getlLine
res <- gateway (efunc <@> userInput)

(<@>) :: (Binary a) => (a>b) »>an->
gateway :: (Binary a) => (a) »

pwdChkr :: Enclave String -> String -> Enclave Bool
pwdChkr pwd guess = fmap (== guess) pwd

passwordChecker :: App Done
passwordChecker = do
passwd <- inEnclaveConstant "secret”
efunc <- inEnclave $ pwdChkr passwd

runClient $§ do -- Client code
1iftI0 $ putStrLn "Enter your password"
userInput <- 1iftIO getlLine
res <- gateway (efunc <@> userInput)
1iftI0 § putStrLn ("Login returned " ++ show res)

pwdChkr :: Enclave String -> String -> Enclave Bool
pwdChkr pwd guess = fmap (== guess) pwd

passwordChecker :: App Done
passwordChecker = do
passwd <- inEnclaveConstant "secret”
efunc <- inEnclave $ pwdChkr passwd

runClient $§ do -- Client code
1iftI0 $ putStrLn "Enter your password"
userInput <- 1iftIO getlLine
res <- gateway (efunc <@> userInput)
1iftI0O $§ putStrLn ("Login returned " ++ show res)

main = runApp passwordChecker

pwdChkr :: Enclave String -> String -> Enclave
pwdChkr pwd guess = fmap (== guess) pwd

passwordChecker :: App Done
passwordChecker = do
passwd <- inEnclaveConst- .. "secr t"
efunc <- inEncl-ve \ pwdCkr »assw i
runCli-n. ¢ ¢ -- Cl <nt (ode
. fty ¢ JunSirln 't _er your password"
Uuemnwt <- _1.,1tI0 getlLine
re 3 <- gateway (efunc <@> userInput)
1iftI0O $§ putStrLn ("Login returned " ++ show res)

main = runApp passwordChecker

Original program

-

N

Com'pile1

—
Compile 2

Secure

Untrusted

Dutorty”

pwdChkr :: Enclave String -> String -> Enclave Bool
pwdChkr pwd guess = fmap (== guess) pwd

passwordChecker :: App Done
passwordChecker = do
passwd <- inEnclaveConstant "secret”
efunc <- inEnclave $ pwdChkr passwd

runClient $§ do -- Client code
1iftI0 $ putStrLn "Enter your password"
userInput <- 1iftIO getlLine
res <- gateway (efunc <@> userInput)
1iftI0O $§ putStrLn ("Login returned " ++ show res)

main = runApp passwordChecker

Compilation 1

-- Enclave
pwdChkr :: Enclave String -> String -> Enclave Bool

pwdChkr pwd guess = fmap (== guess) pwd

passwordChecker :: App Done
passwordChecker = do
passwd <- inEnclaveConstant "secret”
efunc <- inEnclave $ pwdChkr passwd
return DONE

-- wait for calls from Client
main = runApp passwordChecker

Compilation 1

<= Client
pwdChkr = -- gets optimised away

-- Enclave
pwdChkr :: Enclave String -> String -> Enclave Bool

pwdChkr pwd guess = fmap (== guess) pwd

passwordChecker :: App Done
passwordChecker = do
passwd <- return Dummy
efunc <- inEnclave $ -- ignores pwdChkr body
runClient § do -- Client code
1iftI0 $ putStrLn "Enter your password"”
userInput <- 1liftIO getlLine
res <- gateway (efunc <@> userInput)
1iftI0 $§ putStrLn ("Login returned " ++ show res)

passwordChecker :: App Done
passwordChecker = do
passwd <- inEnclaveConstant "secret”
efunc <- inEnclave $ pwdChkr passwd
return DONE

-- wait for calls from Client

-~ drives the application main = runApp passwordChecker

main = runApp passwordChecker

Compilation 1

-- Client

pwdChkr = -- gets optimised away
-- Enclave

pwdChkr :: Enclave String -> String -> Enclave Bool

passwordChecker :: App Done
pwdChkr pwd guess = fmap (== guess) pwd

passwordChecker = do
passwd <- return Dummy
efunc <- inEnclave $ -- ignores pwdChkr body
runClient § do -- Client code
1iftI0 $ putStrLn "Enter your password"”
userInput <- 1liftIO getlLine
res <- gateway (efunc <@> userInput)
1iftI0 $ putStrLn ("Login returned " ++ show res)

passwordChecker :: App Done
passwordChecker = do
passwd <- inEnclaveConstant "secret”
efunc <- inEnclave $ pwdChkr passwd
return DONE

-- wait for calls from Client

-~ drives the application main = runApp passwordChecker

main = runApp passwordChecker

GHC Trusted{}

INTEL SGX

Information Flow Control

Low High

Declassification

Information Flow Control

Low High

gateway

gateway ::

Information Flow Control

(Binary a) => (a) »

gateway ::

Information Flow Control

(Binary a) => (a) »

I

Lack of a Binary instance
prevents leaks

Does not instantiate
but RestrictedIO

type RestrictedIO m = (RandomIO m, FileIO m,

class FileIO m where

readFile :: FilePath -> m String

class RandomIO m ...

Information Flow Control

gateway :: (Binary a) => (a) >

monad restricted
using a typeclass

Non-interference Proposition

e1 :: Enclave a e2 :: Enclave a

IMPLEMENTATION

GHC
Runtime

IMPLEMENTATION

GHC

Runtime

mmap

madvise
getrusage
poll

select

clock apis
pthread apis
libm apis

IMPLEMENTATION

GHC ";,
Runtime

Intel SGX

IMPLEMENTATION

TRUSTED APP

GHC Trusted
Runtime

Patched mmap,
select, etc

https://gramineproject.io/

IMPLEMENTATION

Trusted
T Code Base ~

TRUSTED APP 100K LOC
GHC Trusted /

Runtime

Patched mmap,
select, etc

| 40 system
calls

IMPLEMENTATION

IPC Trusted
. Code Base ~

TRUSTED APP

100K LOC
GHC Trusted i
Runtlme i

Patched mmap,
select, etc

| 40 system
calls

PERFORMANCE

Memory Virtual Size Disk Swap
Atrest 19, 132 KB 287,920 KB 0 KB

Peak 20,796 KB 290,032KB 0 KB

PERFORMANCE
[Memory /” RSS, Virtual Size_/Disk Swap)]

[Atrest [19,152KB) 287920KB | 0KB_)
| Peak \ 20,796 KB/ 290,032KB \OKB /|

Enclave Page Cache
size = 93MB

PERFORMANCE

Memory Virtual Size Disk Swap
Atrest 19, 132 KB 287,920 KB 0 KB

Peak 20,796 KB 290,032KB 0 KB

LATENCY ~ 60 ms
VS
0.6 ms in native SDK

Applications

Zero Trust Federated Learning

Cloud Server

e [

Aggregate models
inside Enclave

S T

Train Encrypted Train Encrypted
Weights Weights

Train Encrypted
Weights

P S

Confidential Confidential Confidential
Data Owner 1 Data Owner 2 Data Owner 3

Zero Trust Federated Learning

Cloud Server

e [

Aggregate models
inside Enclave

Uses

O
20
o
©
g’o
2 E
()

for :

training l----t---s

Train Encrypted

Train Encrypted Train Encrypted
Weights

Weights Weights

P S

Confidential Confidential Confidential
Data Owner 1 Data Owner 2 Data Owner 3

Applications

Federated Learning
Password Wallet
with Differential Privacy

FUTURE WORK

FUTURE WORK

Eficient data
sharing

CHERI Hardware
Compartmentalisation

FUTURE WORK

GHC/Haskell

Requires substantial GHC Runtime
overhaul

CHERI

THANKS !

https://github.com/Abhiroop/EnclavelFC

https://github.com/Abhiroop/EnclaveIFC

