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OS Vulnerabilities

Linux kernel vulnerabilities: State-of-the-art defenses and 
open problems. Mao et al. In Proceedings of the Second 
Asia-Pacific Workshop on Systems (pp. 1-5).

Characterizing hypervisor vulnerabilities in cloud computing 
servers. Perez-Botero et al. In Proceedings of the 2013 
international workshop on Security in cloud computing.
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Trusted Execution Environment (TEE)
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Programming TEEs

Trusted 
Project

Untrusted 
Project

Original Project

EDL
● Trampoline functions
● Arcane Makefiles
● Complex data copying protocol
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PROGRAM

Golang & Java APPROACHES

Language extension

PARSERParser modification

COMPIL-
ATION 

PIPELINE
Data flow/Control 
flow analysis

RUNTIMERuntime modification
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HasTEE

UNTRUSTED GHC Trusted

IFC

No compiler 
modifications*

*Ekblad, A. and Claessen, K. A seamless, client-centric programming model for type safe web applications. 
Haskell Symposium, 2014.



HasTEE Key Contributions
● Automatic Partitioning with no compiler 

modifications
● Program in a high-level language - Haskell
● Enforce Information Flow Control on data 

within enclaves



Illustration : Password Checker
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The App monad



inEnclaveConstant :: a → App (Enclave a)



inEnclave :: (Securable a) => a → App (Secure a)





The Client 
monad





(<@>)     :: (Binary a) => Secure (a → b) → a → Secure b
   gateway    :: (Binary a) => Secure (Enclave a) → Client a 













Compilation 1



Compilation 1Compilation 2



Compilation 1Compilation 2

INTEL SGX

GHC Trusted



Information Flow Control

Declassification

Low High



Information Flow Control
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Information Flow Control

gateway :: (Binary a) => Secure (Enclave a) → Client a 



Information Flow Control

gateway :: (Binary a) => Secure (Enclave a) → Client a 

Lack of a Binary instance 
prevents accidental leaks



Enclave a

Does not instantiate 
MonadIO but RestrictedIO



Information Flow Control

gateway :: (Binary a) => Secure (Enclave a) → Client a 

Enclave monad restricted 
using a RestrictedIO typeclass



Non-interference Proposition

e1 :: Enclave a

p e1

p :: Enclave a -> App Done
p has no `gateway` operation

p e2

e2 :: Enclave a

≈side effect
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IMPLEMENTATION

glibc

HASKELL APP

GHC 
Runtime

Linux

● mmap
● madvise
● getrusage
● poll
● select
● clock apis
● pthread apis
● libm apis
● …



IMPLEMENTATION

tlibc
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?



IMPLEMENTATION

Gramine LibOS
   -------------------
    Gramine PAL

UNTRUSTED APP

GHC Trusted 
Runtime

Linux

glibc

Patched mmap, 
select, etc

TRUSTED APP

https://gramineproject.io/
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PERFORMANCE

Enclave Page Cache 
size = 93MB



PERFORMANCE

LATENCY ~ 60 ms
vs

0.6 ms in native SDK
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Zero Trust Federated Learning

Uses homomorphic 
encryption for 

training



Applications

● Privacy-preserving Federated Learning
● Encrypted Password Wallet
● Data Clean Room with Differential Privacy
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FUTURE WORK

Efficient data 
sharing Library1 Library2

Library3

CHERI Hardware 
Compartmentalisation



FUTURE WORK

CHERI 

GHC/Haskell
GHC RuntimeRequires substantial 

overhaul 



CREDITS: This presentation template was created by 
Slidesgo, incluiding icons by Flaticon, and 

infographics & images by Freepik.

THANKS!
https://github.com/Abhiroop/EnclaveIFC

https://github.com/Abhiroop/EnclaveIFC

