
Programming Trusted Execution
Environments with Haskell

HasTEE

Authors

Robert Krook

Koen Claessen

Abhiroop Sarkar

Alejandro Russo

Cloud Deployments

HARDWARE

HYPERVISOR

OPERATING
SYSTEM

OPERATING
SYSTEM

APP APP APP My
APP

Cloud Deployments

HARDWARE

HYPERVISOR

OPERATING
SYSTEM

OPERATING
SYSTEM

APP APP APP My
APP

Trusted
Computing

Base

OS Vulnerabilities

Linux kernel vulnerabilities: State-of-the-art defenses and
open problems. Mao et al. In Proceedings of the Second
Asia-Pacific Workshop on Systems (pp. 1-5).

Characterizing hypervisor vulnerabilities in cloud computing
servers. Perez-Botero et al. In Proceedings of the 2013
international workshop on Security in cloud computing.

Cloud Deployments

HARDWARE

HYPERVISOR

OPERATING
SYSTEM

OPERATING
SYSTEM

APP APP APP My
APP

Cloud Deployments

HARDWARE

HYPERVISOR

OPERATING
SYSTEM

OPERATING
SYSTEM

Trusted Execution Environment (TEE)

HARDWARE

HYPERVISOR

OPERATING
SYSTEM

OPERATING
SYSTEM

TEE

Trusted Execution Environment (TEE)

Physical Memory
Protection

Programming TEEs

Programming TEEs

Trusted
Project

Untrusted
Project

Original Project

Programming TEEs

Trusted
Project

Untrusted
Project

Original Project

Restricted
libc

Programming TEEs

Trusted
Project

Untrusted
Project

Original Project

EDL
● Trampoline functions
● Arcane Makefiles
● Complex data copying protocol

ALTERNATE APPROACHES

Golang

Java

PROGRAM

Golang & Java APPROACHES

Language extension

PARSERParser modification

COMPIL-
ATION

PIPELINE
Data flow/Control
flow analysis

RUNTIMERuntime modification

HasTEE

HasTEE

UNTRUSTED GHC Trusted

IFC

No compiler
modifications*

*Ekblad, A. and Claessen, K. A seamless, client-centric programming model for type safe web applications.
Haskell Symposium, 2014.

HasTEE Key Contributions
● Automatic Partitioning with no compiler

modifications
● Program in a high-level language - Haskell
● Enforce Information Flow Control on data

within enclaves

Illustration : Password Checker

The Enclave
monad

The App monad

inEnclaveConstant :: a → App (Enclave a)

inEnclave :: (Securable a) => a → App (Secure a)

The Client
monad

(<@>) :: (Binary a) => Secure (a → b) → a → Secure b
 gateway :: (Binary a) => Secure (Enclave a) → Client a

Compilation 1

Compilation 1Compilation 2

Compilation 1Compilation 2

INTEL SGX

GHC Trusted

Information Flow Control

Declassification

Low High

Information Flow Control

gateway

Low High

Information Flow Control

gateway :: (Binary a) => Secure (Enclave a) → Client a

Information Flow Control

gateway :: (Binary a) => Secure (Enclave a) → Client a

Lack of a Binary instance
prevents accidental leaks

Enclave a

Does not instantiate
MonadIO but RestrictedIO

Information Flow Control

gateway :: (Binary a) => Secure (Enclave a) → Client a

Enclave monad restricted
using a RestrictedIO typeclass

Non-interference Proposition

e1 :: Enclave a

p e1

p :: Enclave a -> App Done
p has no `gateway` operation

p e2

e2 :: Enclave a

≈side effect

IMPLEMENTATION

libc

HASKELL APP

GHC
Runtime

Linux/Windows

IMPLEMENTATION

glibc

HASKELL APP

GHC
Runtime

Linux

● mmap
● madvise
● getrusage
● poll
● select
● clock apis
● pthread apis
● libm apis
● …

IMPLEMENTATION

tlibc

HASKELL APP

GHC
Runtime

Linux

Intel SGX

?

IMPLEMENTATION

Gramine LibOS

 Gramine PAL

UNTRUSTED APP

GHC Trusted
Runtime

Linux

glibc

Patched mmap,
select, etc

TRUSTED APP

https://gramineproject.io/

IMPLEMENTATION

Gramine LibOS

 Gramine PAL

UNTRUSTED APP

GHC Trusted
Runtime

Linux

glibc

Trusted
Code Base ~
100K LOCPatched mmap,

select, etc

40 system
calls

TRUSTED APP

IMPLEMENTATION

Gramine LibOS

 Gramine PAL

UNTRUSTED APP

GHC Trusted
Runtime

Linux

glibc

Trusted
Code Base ~
100K LOCPatched mmap,

select, etc

40 system
calls

TRUSTED APP

IPC

PERFORMANCE

PERFORMANCE

Enclave Page Cache
size = 93MB

PERFORMANCE

LATENCY ~ 60 ms
vs

0.6 ms in native SDK

Applications

Zero Trust Federated Learning

Zero Trust Federated Learning

Uses homomorphic
encryption for

training

Applications

● Privacy-preserving Federated Learning
● Encrypted Password Wallet
● Data Clean Room with Differential Privacy

FUTURE WORK

FUTURE WORK

Efficient data
sharing Library1 Library2

Library3

CHERI Hardware
Compartmentalisation

FUTURE WORK

CHERI

GHC/Haskell
GHC RuntimeRequires substantial

overhaul

CREDITS: This presentation template was created by
Slidesgo, incluiding icons by Flaticon, and

infographics & images by Freepik.

THANKS!
https://github.com/Abhiroop/EnclaveIFC

https://github.com/Abhiroop/EnclaveIFC

