## </>>

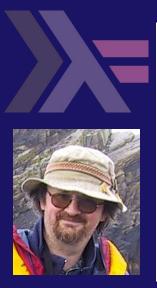
## HasTEE - Confidential Computing with Haskell

Abhiroop Sarkar Chalmers University, Gothenburg

## CHALMERS

\*

# CHALMERS


\*



#### hbc

HBC - Chalmers Haskell-B compiler

Public archive

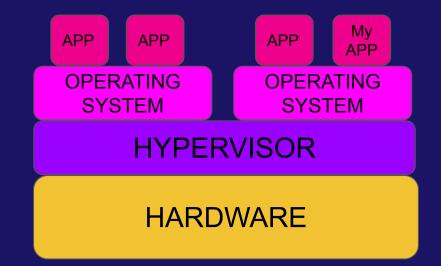


#### Why Functional Programming Matters

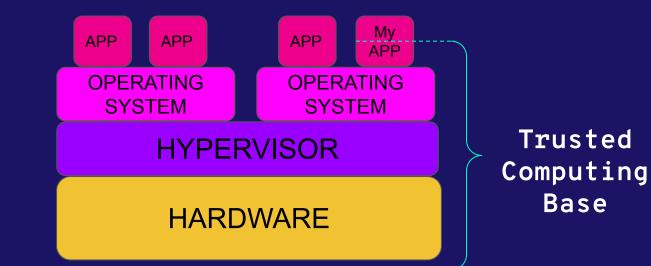
John Hughes, Institutionen för Datavetenskap, Chalmers Tekniska Högskola, 41296 Göteborg, SWEDEN. rjmh@cs.chalmers.se

This paper dates from 1984, and circulated as a Chalmers memo for many years. Slightly revised versions appeared in 1989 and 1990 as [Hug90] and




## Obsidian SynchronVM Feldspar NVIDI GEFORCE 6600 GT .






## Trusted Execution Environments

#### **Cloud Deployments**



#### **Cloud Deployments**



### **OS Vulnerabilities**

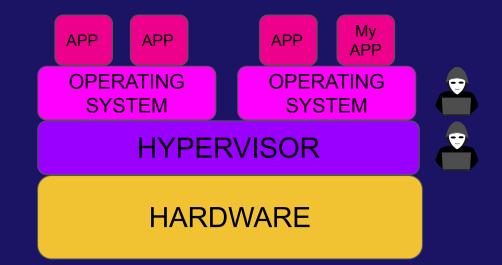
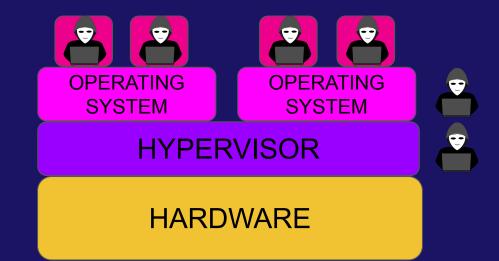
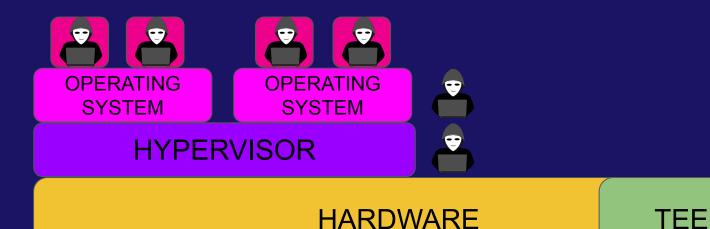
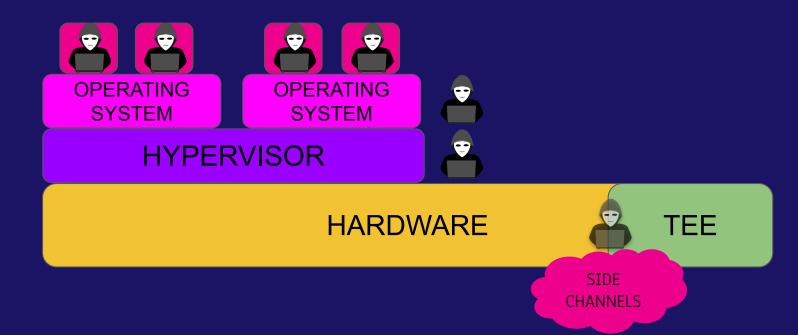
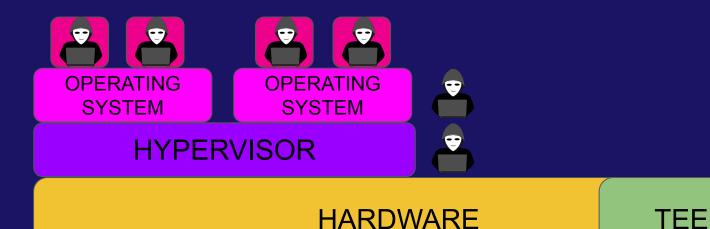

| Vulnerability            | Total | core | drivers | net | fs | sound |
|--------------------------|-------|------|---------|-----|----|-------|
| Missing pointer check    | 8     | 4    | 3       | 1   | 0  | 0     |
| Missing permission check | 17    | 3    | 1       | 2   | 11 | 0     |
| Buffer overflow          | 15    | 3    | 1       | 5   | 4  | 2     |
| Integer overflow         | 19    | 4    | 4       | 8   | 2  | 1     |
| Uninitialized data       | 29    | 7    | 13      | 5   | 2  | 2     |
| Null dereference         | 20    | 9    | 3       | 7   | 1  | 0     |
| Divide by zero           | 4     | 2    | 0       | 0   | 1  | 1     |
| Infinite loop            | 3     | 1    | 1       | 1   | 0  | 0     |
| Data race / deadlock     | 8     | 5    | 1       | 1   | 1  | 0     |
| Memory mismanagement     | 10    | 7    | 1       | 1   | 0  | 1     |
| Miscellaneous            | 8     | 2    | 0       | 4   | 2  | 0     |
| Total                    | 141   | 47   | 28      | 35  | 24 | 7     |

Figure 2: Vulnerabilities (rows) vs. locations (columns).

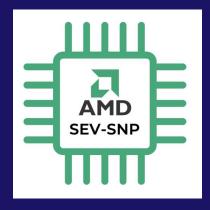

Linux kernel vulnerabilities: State-of-the-art defenses and open problems. Mao et al. In *Proceedings of the Second Asia-Pacific Workshop on Systems* (pp. 1-5).


**Characterizing hypervisor vulnerabilities in cloud computing servers.** Perez-Botero et al. In *Proceedings of the 2013 international workshop on Security in cloud computing*.


#### **Cloud Deployments**




#### **Cloud Deployments**

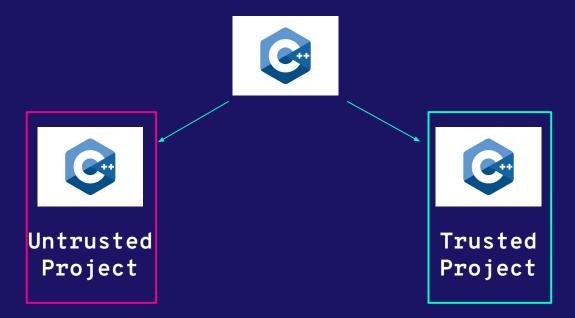








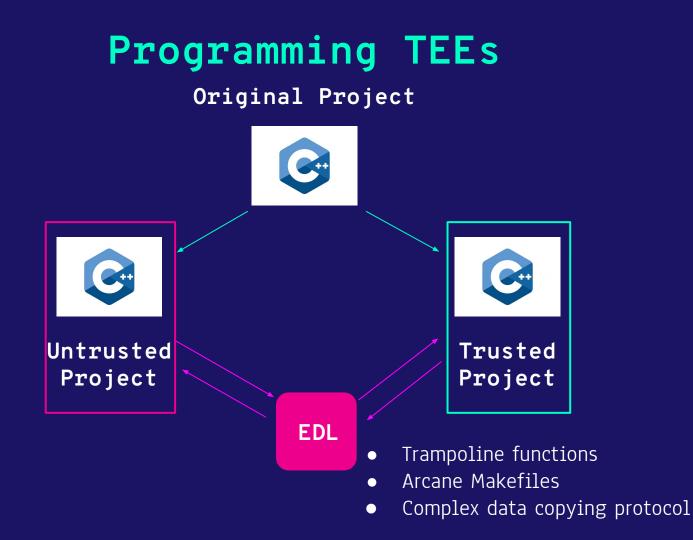









Physical Memory Protection

#### Original Project



#### Original Project





You are passing a double pointer, it is, a pointer to pointer to char ( char \*\* ).

While marshaling/unmarshaling pointers, the EDL Processor processes (copies and validates input and output) only the first level of indirection, it's up to the developer to handle the additional levels of indirection. Hence, for an array of pointers it will only copy the first array of pointers, not the pointed values, <u>copying them is the developer's responsibility</u>.

Source: stackoverflow.com

#### Secure Program Partitioning

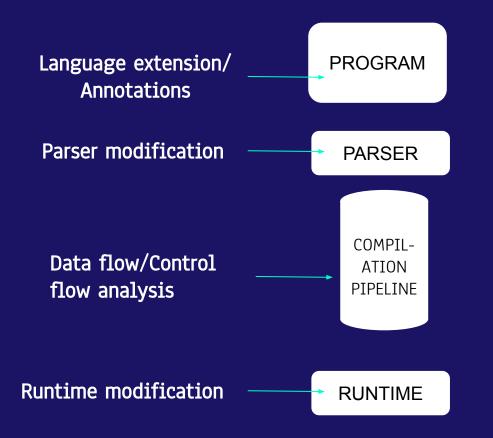
STEVE ZDANCEWIC, LANTIAN ZHENG, NATHANIEL NYSTROM, and ANDREW C. MYERS Cornell University

#### Language Support for Secure Software Development with Enclaves

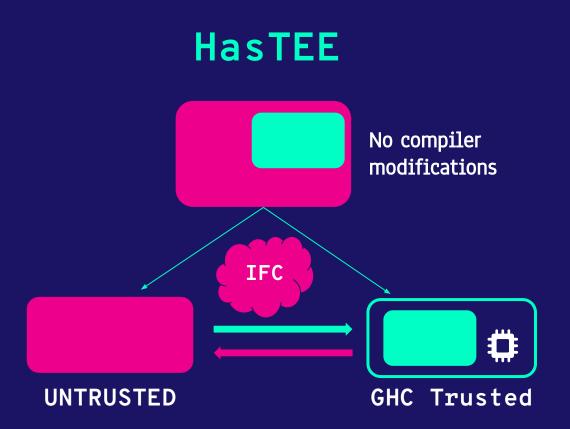
Aditya Oak TU Darmstadt

Amir M. Ahmadian KTH Royal Institute of Technology Musard Balliu KTH Royal Institute of Technology

Guido Salvaneschi University of St.Gallen


#### PtrSplit: Supporting General Pointers in Automatic Program Partitioning

Shen Liu The Pennsylvania State University University Park, PA sxl463@cse.psu.edu Gang Tan The Pennsylvania State University University Park, PA gtan@ Trent Jaeger The Pennsylvania State University University Park, PA First, seamless integration of enclave programming into software applications remains challenging. For example, Intel provides a C/C++ interface to the SGX enclave but no direct support is available for managed languages. As managed languages like Java and Scala are extensively used for developing distributed applications, developers need to either interface their programs with the C++ code executing in the enclave (e.g., using the Java Native Interface [12]) or compile their encements to active active (are using [13]).


#### Glamdring: Automatic Application Partitioning for Intel SGX

Joshua Lind Christian Priebe Divya Muthukumaran Dan O'Keeffe Imperial College London Imperial College London Imperial College London Imperial College London **Tobias Reiher** Pierre-Louis Aublin Florian Kelbert David Goltzsche TU Braunschweig Imperial College London Imperial College London TU Dresden David Eyers Rüdiger Kapitza Christof Fetzer Peter Pietzuch University of Otago TU Braunschweig **TU** Dresden Imperial College London

#### **PROGRAM PARTITIONING**







Sarkar, A., Krook, R., Russo, A. and Claessen, K., 2023, August. HasTEE: Programming Trusted Execution Environments with Haskell. In *Proceedings of the 16th ACM SIGPLAN International Haskell Symposium* (pp. 72-88).

## HasTEE Key Contributions

- Type-driven Partitioning with no compiler modifications
- Program TEEs in a high-level language -Haskell
- Enforce Information Flow Control on data within enclaves



# return :: a → m a (>>=) :: m a → (a → m b) → m b

## MONAD tainting return :: a → m a

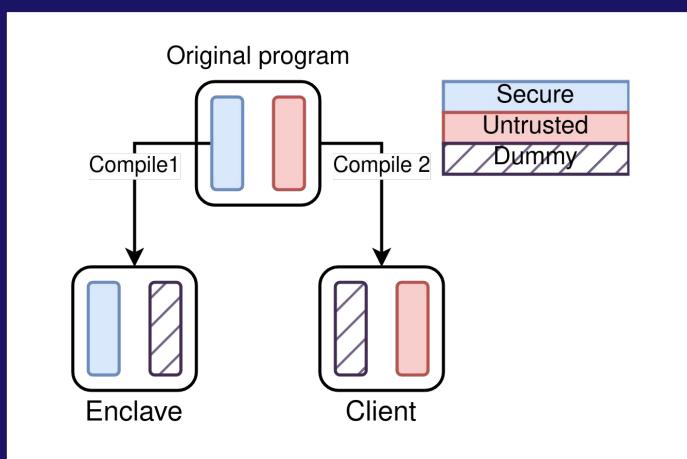
### (>>=) :: m a → (a → m b) → m b





# return :: a → m a (>>=) :: m <u>a → (a → m b) → m b</u>

TAINT TRACKING ALTERNATE SEMANTICS


### Illustration : Password Checker

```
pwdChkr :: Enclave String -> String -> Enclave Bool
pwdChkr pwd guess = fmap (== guess) pwd
passwordChecker :: App Done
passwordChecker = do
  passwd <- inEnclaveConstant "secret"</pre>
  efunc <- inEnclave $ pwdChkr passwd
  runClient $ do -- Client code
    liftIO $ putStrLn "Enter your password"
    userInput <- liftIO getLine
             <- gateway (efunc <@> userInput)
    res
    liftI0 $ putStrLn ("Login returned " ++ show res)
```

main = runApp passwordChecker



main = runApp passwordChecker



#### Compilation 1

#### -- Enclave

pwdChkr :: Enclave String -> String -> Enclave Bool
pwdChkr pwd guess = fmap (== guess) pwd

```
passwordChecker :: App Done
passwordChecker = do
    passwd <- inEnclaveConstant "secret"
    efunc <- inEnclave $ pwdChkr passwd
    return DONE</pre>
```

-- wait for calls from Client main = runApp passwordChecker

#### Compilation 2

#### Compilation 1

#### -- Client

pwdChkr = -- gets optimised away

passwordChecker :: App Done passwordChecker = do passwd <- return Dummy efunc <- inEnclave \$ -- ignores pwdChkr body runClient \$ do -- Client code liftI0 \$ putStrLn "Enter your password" userInput <- liftI0 getLine res <- gateway (efunc <@> userInput) liftI0 \$ putStrLn ("Login returned " ++ show res)

-- drives the application main = runApp passwordChecker

#### -- Enclave

```
pwdChkr :: Enclave String -> String -> Enclave Bool
pwdChkr pwd guess = fmap (== guess) pwd
```

```
passwordChecker :: App Done
passwordChecker = do
  passwd <- inEnclaveConstant "secret"
  efunc <- inEnclave $ pwdChkr passwd
  return DONE</pre>
```

-- wait for calls from Client main = runApp passwordChecker

#### Compilation 2

#### Compilation 1

#### -- Client

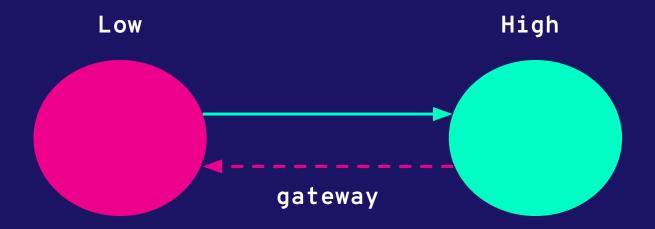
pwdChkr = -- gets optimised away

passwordChecker :: App Done passwordChecker = do passwd <- return Dummy efunc <- inEnclave \$ -- ignores pwdChkr body runClient \$ do -- Client code liftI0 \$ putStrLn "Enter your password" userInput <- liftI0 getLine res <- gateway (efunc <@> userInput) liftI0 \$ putStrLn ("Login returned " ++ show res)

-- drives the application main = runApp passwordChecker

#### -- Enclave

pwdChkr :: Enclave String -> String -> Enclave Bool
pwdChkr pwd guess = fmap (== guess) pwd


```
passwordChecker :: App Done
passwordChecker = do
  passwd <- inEnclaveConstant "secret"
  efunc <- inEnclave $ pwdChkr passwd
  return DONE</pre>
```

-- wait for calls from Client main = runApp passwordChecker



INTEL SGX





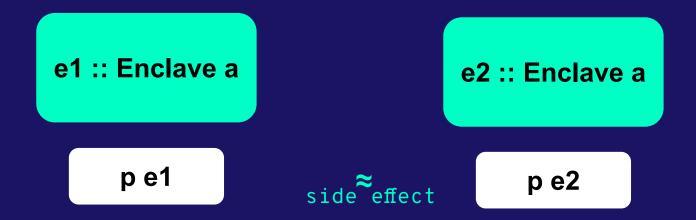
gateway :: (Binary a) => Secure (Enclave a) → Client a

gateway :: (Binary a) => Secure (Enclave a) → Client a

Lack of a Binary instance prevents accidental leaks

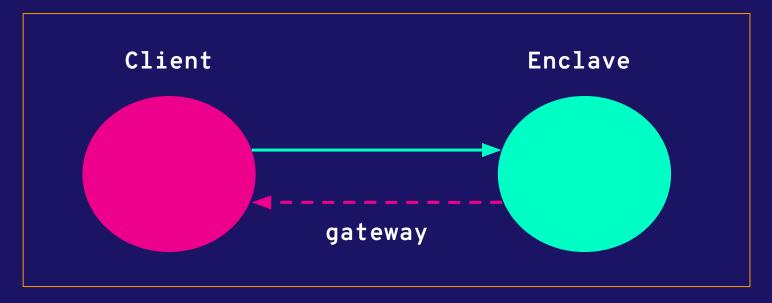
Enclave monad restricted using a RestrictedIO typeclass

gateway :: (Binary a) => Secure (Enclave a) → Client a

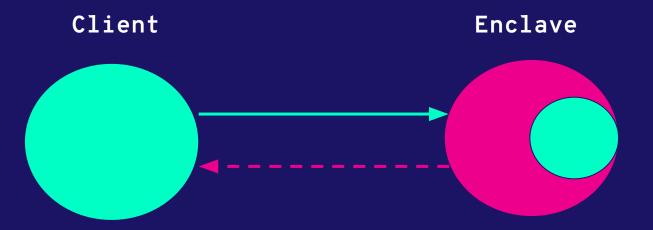

type RestrictedIO m = (RandomIO m, FileIO m, ..)

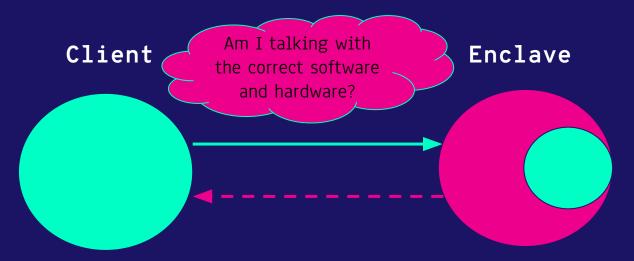
class FileIO m where
 readFile :: FilePath -> m String

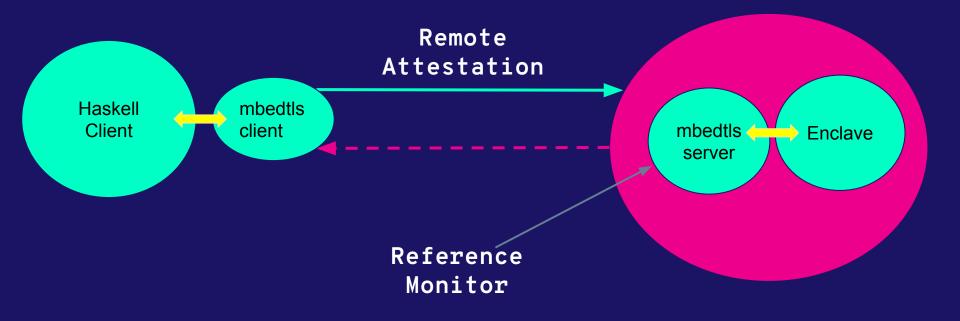
class RandomIO m ...

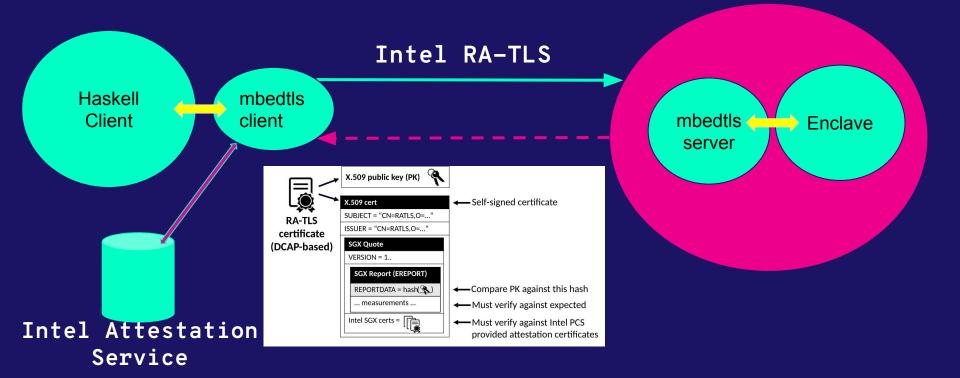

#### Non-interference Proposition

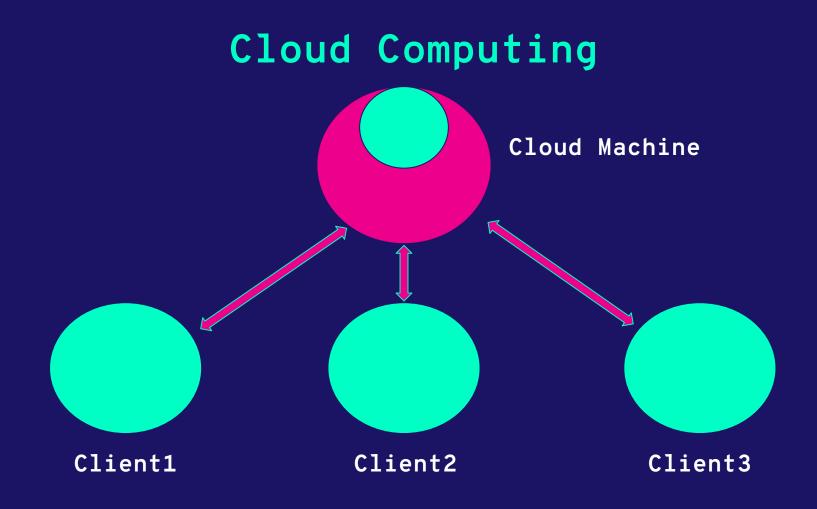
p :: Enclave a -> App Done
p has no `gateway` operation





## Code Auditing


| 78  | res <- <mark>gateway</mark> rem_srv                                                                                                                    |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | case res of                                                                                                                                            |
|     | Nothing -> do                                                                                                                                          |
| 81  | liftIO \$ threadDelay 1000000                                                                                                                          |
| 82  | retry ateway rem srv                                                                                                                                   |
|     |                                                                                                                                                        |
|     | Just a -> return a                                                                                                                                     |
|     |                                                                                                                                                        |
|     | computeGradient :: API                                                                                                                                 |
|     | -> P.PrvKey                                                                                                                                            |
| 87  | -> Config                                                                                                                                              |
|     | -> Matrix Double                                                                                                                                       |
| 89  | -> Vector Int                                                                                                                                          |
|     |                                                                                                                                                        |
| 90  | -> Client (Vector CT)                                                                                                                                  |
|     | computeGradient api prv cfg x y = do                                                                                                                   |
|     | let m = ncols x                                                                                                                                        |
|     | prod <- dotprodHEC api pubK (weights cfg) x                                                                                                            |
| 94  | yPred <- V.mapM (sigmoid taylor expandC api pubK) prod                                                                                                 |
|     | yEnc <- V.mapM ((\e -> liftIO s encrypt pubK e) . int2Double) y                                                                                        |
|     | prod' <- do                                                                                                                                            |
|     | op <- subPHE yPred yEnc                                                                                                                                |
| 98  |                                                                                                                                                        |
|     | dotprodHEC api pubK op (M.transpose x)                                                                                                                 |
| 99  | <mark>gateway</mark> \$ recryptMany api ⊲⊚ V.map (∖c -> homoMul pubK c (1 / (fromIntegral m))) prod'                                                   |
| 100 |                                                                                                                                                        |
| 101 | pubK = pubKey cfg                                                                                                                                      |
| 102 | subPHE xs ys = gateway \$ recryptMany api <@> V.zipWith (\v1 v2 -> homoSub pubK v1 v2) xs ys                                                           |
|     |                                                                                                                                                        |
| 104 |                                                                                                                                                        |
|     | dotprodHEC :: API                                                                                                                                      |
| 106 | -> P. PubKey                                                                                                                                           |
| 107 | -> V.Vector CT                                                                                                                                         |
|     |                                                                                                                                                        |
| 108 | -> Matrix Double                                                                                                                                       |
|     | -> Client (V.Vector CT)                                                                                                                                |
| 110 | dotprodHEC api pubk w x = do                                                                                                                           |
| 111 |                                                                                                                                                        |
| 112 | enc_zero <- liftIO \$ encrypt pubk 0.0                                                                                                                 |
| 113 | vec <- flip Prelude.mapM [1i] \$ \i' -> do                                                                                                             |
| 114 | <pre>let dots = V.zipWith (\d cipher -&gt; homoMul pubk cipher d) (getRow i' x') w</pre>                                                               |
| 115 |                                                                                                                                                        |
| 115 | dots' <- <mark>gateway</mark> \$ recryptMany api ≪⊳ dots<br>V.foldM (\c c' -> <mark>gateway</mark> \$ recrypt api ≪⊳ homoAdd pubk c c') enc_zero dots' |
|     |                                                                                                                                                        |
| 117 | return \$ V.fromList vec                                                                                                                               |
| 118 |                                                                                                                                                        |
| 119 | x' = transpose x                                                                                                                                       |
| 120 | i = nrows x'                                                                                                                                           |
| 121 |                                                                                                                                                        |
| 122 | sigmoid taylor expandC :: API -> P.PubKey -> CT -> Client CT                                                                                           |
| 123 | sigmoid taylor expandC api pubK cipher = do                                                                                                            |
| 124 | let val = 0.5                                                                                                                                          |
| 124 | enc_val <- liftIO § encrypt pubK valgo2I val                                                                                                           |
| 125 |                                                                                                                                                        |
|     | first « <mark>gateway</mark> s recrypt api 🧆 homoMul pubK cipher 0.25                                                                                  |
| 127 | <mark>gateway</mark> s recrypt api 🦇 homoAdd pubK enc_val first                                                                                        |
| 128 |                                                                                                                                                        |
| 129 | updateModel :: API -> Config -> Vector CT -> Client Config                                                                                             |
| 130 | updateModel api cfg grad = do                                                                                                                          |
| 131 | let lr = learningRate cfg / sqrt (1 + fromIntegral (iterN cfg))                                                                                        |
| 132 | gr <- do                                                                                                                                               |
| 133 | let op = V.map (\w -> homoMul pubK w (alpha cfq)) (weights cfq)                                                                                        |
| 133 | op' <- gateway \$ recryptMany api <> op                                                                                                                |
| 134 | addP grad op'                                                                                                                                          |
|     |                                                                                                                                                        |
| 120 | nw <- do                                                                                                                                               |





#### Single Machine



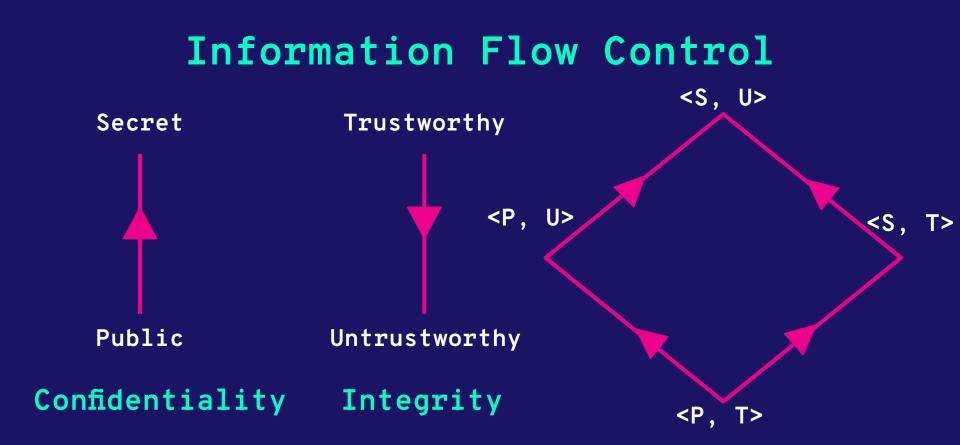






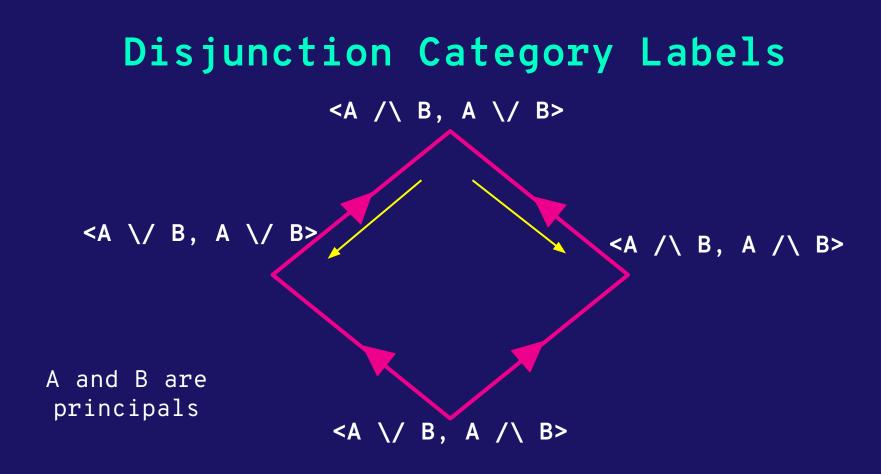


```
pwdChecker :: Enclave String -> String -> Enclave Bool
pwdChecker pwd guess = do
  p <- pwd
  if (p == guess)
  then return True
  else return False
. . .
. . .
res <- gateway.. call pwdChecker..
putStrLn (show res)
```


Violates non-interference Public output influenced by secret

```
pwdChecker :: Enclave String -> String -> Enclave Bool
pwdChecker pwd guess = do
  p <- pwd
  if (p == quess)
  then return True
  else return False
. . .
. . .
res <- gateway.. call pwdChecker..
putStrLn (show res)
```

#### No way to distinguish data source

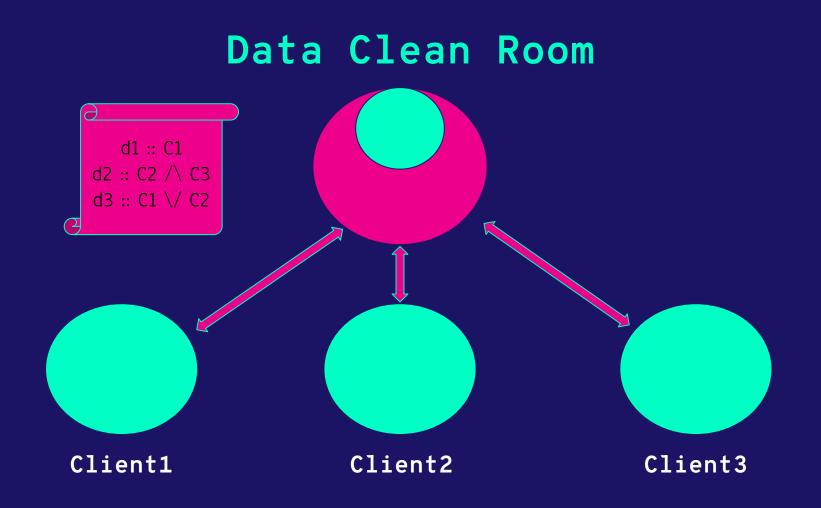

| class | Label | 1  | whe | ere |   |    |      |  |
|-------|-------|----|-----|-----|---|----|------|--|
| lub   |       | :: | 1   | ->  | 1 | -> | 1    |  |
| glb   |       | :: | 1   | ->  | 1 | -> | 1    |  |
| canF  | lowTo | :: | 1   | ->  | 1 | -> | Bool |  |
|       |       |    |     |     |   |    |      |  |

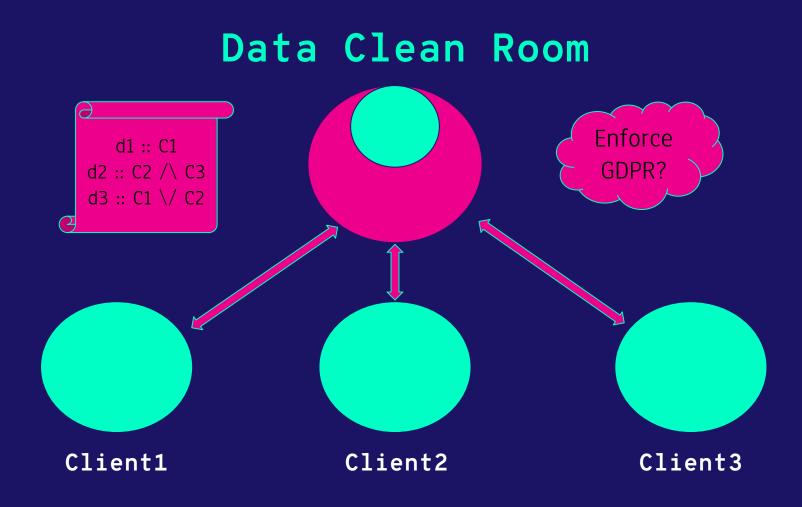
Enclave 1 a -- parameterised on Label 1 Labeled 1 a -- parameterised on Label 1



Denning, Dorothy E. "A lattice model of secure information flow." *Communications of the ACM* 19.5 (1976): 236-243. Biba, K.J. Integrity considerations for secure computer systems. Technical Report. April 1977.

# **Information Flow Control** <S, U> declassific endorsement <P, U> <S, T> <P, T>



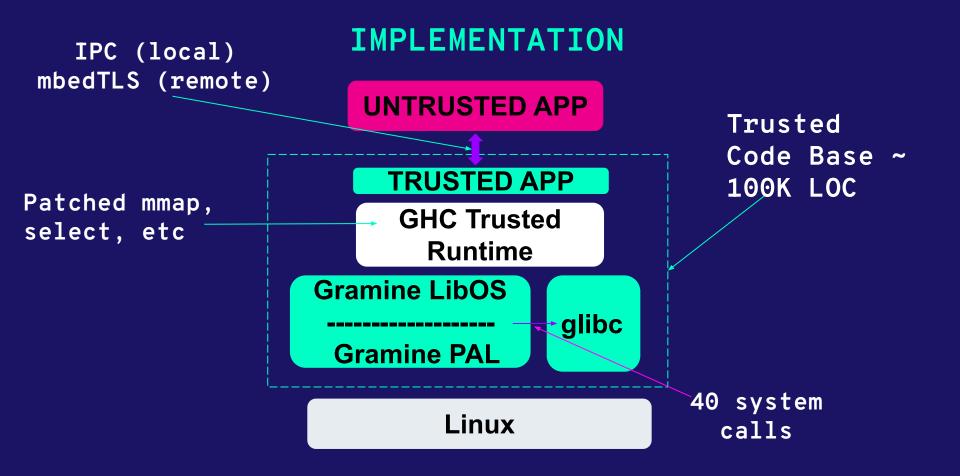


Stefan, D., Russo, A., Mazières, D., & Mitchell, J. C. (2012). Disjunction category labels. In *Information Security Technology for Applications: 16th Nordic Conference on Secure IT Systems, NordSec 2011* 

| taint     | :: Label l => l -> Enclave l ()                                               |
|-----------|-------------------------------------------------------------------------------|
| label     | :: Label l => l -> a -> Enclave l (Labeled l a)                               |
| unlabel   | :: Label l => Labeled l a -> Enclave l a                                      |
| label0f   | :: Label l => Labeled l a -> l                                                |
| toLabeled | <pre>:: Label 1 =&gt; 1 -&gt; Enclave 1 a -&gt; Enclave 1 (Labeled 1 a)</pre> |
|           |                                                                               |

Supports declassification and endorsement via privileges (capabilities)

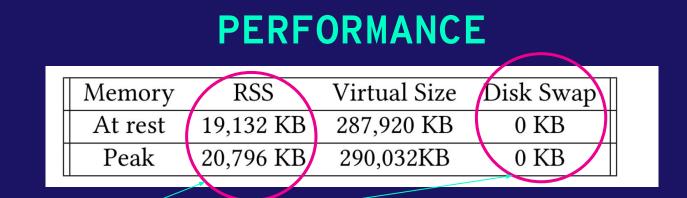
DYNAMIC CHECKS for dynamically changing policies






#### IMPLEMENTATION




#### IMPLEMENTATION



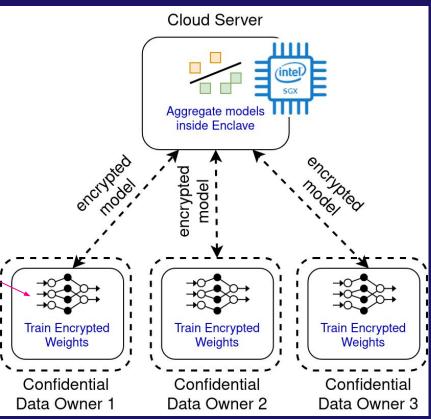


#### PERFORMANCE

| Memory  | RSS       | Virtual Size | Disk Swap |
|---------|-----------|--------------|-----------|
| At rest | 19,132 KB | 287,920 KB   | 0 KB      |
| Peak    | 20,796 KB | 290,032KB    | 0 KB      |



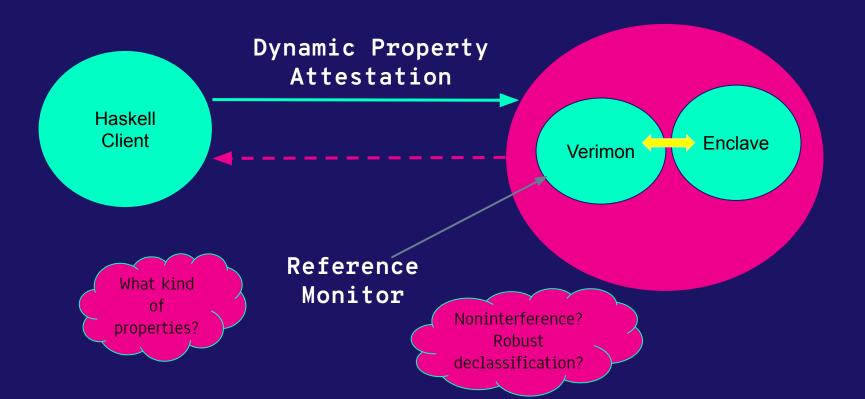
Enclave Page Cache size = 93MB


#### PERFORMANCE

| Memory  | RSS       | Virtual Size | Disk Swap |
|---------|-----------|--------------|-----------|
| At rest | 19,132 KB | 287,920 KB   | 0 KB      |
| Peak    | 20,796 KB | 290,032KB    | 0 KB      |

#### LATENCY ~ 60 ms vs 0.6 ms in native SDK

## Zero Trust Federated Learning


Uses homomorphic encryption for training



## Applications

- **Privacy-preserving** Federated Learning
- Encrypted Password Wallet
- Data Clean Room with Differential Privacy

#### FUTURE WORK



#### FUTURE WORK

## GHC/Haskell

**GHC Runtime** 

Requires substantial overhaul

### CHERI/TrustZONE/AMD SEV

# **THANKS!**

https://github.com/Abhiroop/HasTEE