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Abstract8

Programming embedded systems applications involves writing concurrent, event-driven and9

timing-aware programs. Traditionally such programs are written in low-level machine-oriented10

programming languages like C or Assembler. We present SenseVM, an alternative that offers11

high-level features to the programmer while delegating the low-level support needed to a runtime12

system and one-time-effort drivers.13

SenseVM is a virtual machine (VM) for embedded systems that provides an API that supports14

(i) message-passing based concurrency, (ii) a message-passing based IO interface that translates15

between low-level interrupt based and memory-mapped peripherals and (iii) an operator to express16

timing behaviours. Programs for SenseVM are written in a Caml-inspired functional language that17

gets compiled to bytecodes interpreted by the VM. The VM supports Concurrent ML (CML) style18

concurrency by providing bytecode operations corresponding to CML’s message-passing primitives.19

All I/O is expressed as reads or writes on CML channels while a low-level I/O bridge interface20

handles interactions with interrupt service routines or memory-mapped I/O. For timing of operations,21

we add a variant of CML’s sync operation called syncT that incorporates ideas from TinyTimber.22

The devices targeted by SenseVM are microcontroller-based systems such as the STM32F4 or23

the NRF52. The particular models of these microcontrollers used in our evaluations come with 19624

and 256kB of RAM and run at 168 and 64MHz. We evaluate the VM on a set of small programs25

suited to the peripherals available on each board and provide benchmarks estimating the VM’s26

response time and jitter rates.27
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1 Introduction34

Embedded systems are ubiquitous and often used for performing control operations. For35

instance, a washing machine serves information to its user through a small LED-based36

display while taking input from the user in the form of control knobs and buttons. The37

main function of the system is, however, to perform a wash cycle consisting of heating of38

water, filling washing compartment with water, mix in laundry detergent at the right time39

and dosage, spinning the drum at various speeds at various time and so on. All of this is40

accomplished through actuation via microcontroller peripherals such as a timer generating41

a Pulse-width Modulation (PWM) signal of the correct frequency and duty cycle to drive42

a motor at the desired speed or controlling relays for turning pumps on and off. All the43

while, sensors provides information to the microcontroller about clogged up filters or other44

non-ideal conditions. All in all the application is concurrent and aware of a notion of time.45
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SenseVM is geared towards such applications, with the approximate performance of the46

NRF52 (64Mhz, 256kB RAM) microcontroller. These microcontroller-based applications like47

IoT controllers, industrial machinery, etc tend to embody three common characteristics:48

1. They are predominantly I/O bound applications49

2. They are concurrent in nature50

3. A large subset of such programs are timing-aware51

This list is by no means exhaustive, as discussed later in Section 1.2, but captures a52

prevalent theme among embedded applications. Programming these applications involve53

interaction with callback-based driver APIs like the following from the Zephyr RTOS[11]:54

Listing 1 A callback-based GPIO driver API
55

1 int gpio_pin_interrupt_configure (const struct device *port56

2 , gpio_pin_t pin57

3 , gpio_flags_t flags);58

4 void gpio_init_callback ( struct gpio_callback * callback59

5 , gpio_callback_handler_t handler60

6 , gpio_port_pins_t pin_mask );61

7 int gpio_add_callback (const struct device *port62

8 , struct gpio_callback * callback );6364

Programming with the above API in low-level languages like C leads to complicated65

state machines, which even for relatively small programs result in difficult-to-maintain and66

complex state-transition tables. More modern language runtimes like MicroPython [12] and67

Espruino (Javascript) [36] support higher-order functions and handle callback-based APIs in68

the following way:69

Listing 2 Driver interactions using Micropython
70

1 def callback (x):71

2 #... callback body with nested callbacks ...72

373

4 extint = pyb. ExtInt (pin , pyb. ExtInt . IRQ_FALLING74

5 , pyb.Pin.PULL_UP , callback )75

6 ExtInt . enable ()7677

The nested-callback handling, mentioned above, leads to a form of accidental complexity,78

colloquially termed as callback-hell [20]. Moreover, all of the above mentioned languages use79

error-prone shared-memory primitives like semaphores and locks to mediate interactions that80

occur between the callback-based driver handlers.81

SenseVM attempts to address the concerns about callback-hell and shared-memory82

communication while targeting the three characteristics of embedded programs mentioned83

earlier by a combination of:84

1. Concurrent ML style concurrency and message-passing.85

2. An I/O bridge providing a message-passing interface to low-level peripherals.86

3. A notion of time.87

Concurrent ML (CML) [25] builds upon the message-passing based concurrency model88

CSP [15] but adds the feature of composable first-class events. These first-class events allow89

the programmer to tailor new concurrency abstractions and express application-specific90

protocols. A CML event is a value that represents the intention to possibly communicate91

and not the actual action of communication. The programmer decides when and if to turn92

an intent to communicate into the action of communication, which is done using the CML93

primitive sync.94
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SenseVM implements a low-level bridge interface that separates the runtime system from95

platform-dependent specifics. The runtime system is written in C99 with no dependencies96

on any threading subsystem or low-level hardware abstraction layer. The low-level bridge on97

the other hand, is implemented on top of Zephyr or ChibiOS to make use of their hardware98

abstractions. The bridge communicates with SenseVM application threads using the same99

channel abstraction as message-passing between threads, while on the low-level side of the100

bridge, each driver implements the memory-mapped IO or callback/interrupt-based interface101

with the respective hardware peripherals. Fig 1 provides an overview of SenseVM.102

Zephyr/ChibiOs

Low-level Bridge

Drivers

C99

OS/HAL

Process1
SenseVM

Process2 Process3 Process4

Wall-clock time subsystem

SenseVM Runtime System

dependent

processes

Figure 1 An overview of SenseVM

For timing, SenseVM takes inspiration from the TinyTimber kernel [19] that allows103

the specification of baseline and deadline windows for invocation of a method in a class.104

Just like TinyTimber, SenseVM applies an earliest-deadline-first (EDF) scheduling of tasks105

whose baseline have been reached. In TinyTimber, WITHIN( B, D, &obj, meth, 123 );106

expresses the desire that method meth should be run at the earliest at time B and finish107

within a duration of D. The SenseVM adaptation of TinyTimber WITHIN is syncT that takes108

a baseline, deadline and an event as argument.109

1.1 Contributions110

We identify the three characteristic behaviours of being (i) I/O bound, (ii) concurrent,111

and (iii) timing-aware for embedded applications and propose a combination of ideas that112

mesh well with each other and address these requirements. We explain SenseVM’s API113

in detail in Section 3.114

Message-passing based IO. We present a uniform message-passing framework that115

combines concurrency and callback-based I/O to a single interface. A software message or116

a hardware interrupt is identical in our programming interface, providing the programmer117

with a simpler message-based framework to express concurrent hardware interactions.118

We describe the API in Section 3, show illustrative examples in Sections 4 and 5 and look119

at the critical implementation details in Section 6.120

Declarative state machines for embedded systems. Combining CML primitives121

with our I/O interface allows presenting a declarative framework to express state machines,122

commonly found in embedded systems. We illustrate examples of representing finite-state123

machines on the SenseVM in Section 4.124

Evaluation. We provide empirical evaluations of several small embedded-system pro-125

grams and an adaptation of a programming exercise from a real-time programming course.126

The programming exercise is a soft real-time music programming example running on127

the STM32F4 microcontroller, presented in Section 5. We provide benchmarking results in128

Section 7.129

ECOOP 2022
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1.2 Limitations130

The characteristics of embedded programs that are not addressed in this work are:131

Power efficiency and lifetime while operating from a small battery, for example. This132

is challenging for a byte-code interpreting virtual machine as there will be interpretive133

overhead costs in battery life.134

Certain embedded applications have very tight timing requirements and should execute as135

fast as possible. This is very hard for a byte-code interpreting virtual machine to match.136

Reliable and consistent timing is central to many control applications. It is hard for a137

runtime system with garbage collection to always meet such timing requirements .138

Our evaluations in Section 7 show the performance of SenseVM in these areas like139

interpretive and garbage-collection overheads. We discuss future work to address a number140

of these limitations in Section 8.141

2 Motivation and Background142

•Concurrency and IO. In embedded systems, concurrency takes the form of a combination143

of callback routines, interrupt service routines and possibly a threading system, for example144

threads as provided by ZephyrOS, ChibiOS or FreeRTOS. The callback style of programming145

is complicated but offers benefits when it comes to energy efficiency. Registering a callback146

with an Interrupt Service Routine (ISR) allows the processor to go to sleep and conserve147

power until the interrupt arrives. Listing 3 shows a cut-down code snippet that registers148

a callback for a button-press and release (as configured by GPIO_INT_EDGE_BOTH on line 11149

of listing 3). The example uses ZephyrOS. When the button press or release happens, the150

callback routine sets an LED to either on or off. The GPIO_INT_DEBOUNCE configuration in151

the registering of the callback makes use of button debouncing hardware if implemented on152

the GPIOs on the micrcontroller unit (MCU); this means that at the time our callback is153

run, we should have a stable one or zero on the GPIO pin associated with the button.154

Listing 3 Callback programming in C
155

1 void button_pressed (const struct device *dev ,156

2 struct gpio_callback *cb , uint32_t pins)157

3 { match_led_to_button (dev , led); }158

4159

5 void main(void){....160

6 button = device_get_binding ( SW0_GPIO_LABEL );161

7 ret = gpio_pin_configure (button , SW0_GPIO_PIN , SW0_GPIO_FLAGS );162

8 ret = gpio_pin_interrupt_configure (button ,163

9 SW0_GPIO_PIN ,164

10 GPIO_INT_DEBOUNCE |165

11 GPIO_INT_EDGE_BOTH );166

12167

13 gpio_init_callback (& button_cb_data , button_pressed ,168

14 BIT( SW0_GPIO_PIN ));169

15 gpio_add_callback (button , & button_cb_data );170

16 ....}171

17172

18 static void match_led_to_button (const struct device *button ,173

19 const struct device *led){174

20 bool val = gpio_pin_get (button , SW0_GPIO_PIN );175

21 gpio_pin_set (led , LED0_GPIO_PIN , val);176

22 }177178



Anonymous author(s) 23:5

The simple program above, in its entirety, is more than 100 lines of callback-based code179

[10]. We have omitted non-essential parts of the code. The control-flow of such callback-180

based programs is non-linear and reasoning about them complex. As the number of states181

in a system multiplies, the complexity of callback-based programs grows exponentially. An182

alternate pattern to restore the linear control flow of a program is the event-loop pattern.183

As the name implies, an event-loop based program involves an infinitely running loop that184

handles interrupts and dispatches the corresponding interrupt-handlers. An event-loop based185

program involves some delicate plumbing that connects its various components. Listing 4186

shows a tiny snippet of the general pattern.187

Listing 4 Event Loop
188

1 void eventLoop (){189

2 while (1) {190

3 switch ( GetNextEvent ()) {191

4 case GPIO1 : GPIO1Handler ();192

5 case GPIO2 : GPIO2Handler ();193

6 ....194

7 default : goToSleep (); // no events195

8 }}}196

9197

10 GPIO1Handler (){ ... } // must not block198

11 GPIO2Handler (){ ... } // must not block199

12200

13 // when interrupt arrives write to event queue201

14 GPIO1_IRQ () {....}202

15 GPIO2_IRQ () {....}203204

Programs like the above are an improvement over callbacks, as they restore the linear205

control-flow of a program, which eases reasoning. However, such programs have a number of206

weaknesses - (i) they are highly inextensible, (ii) they enforce constraints on the blocking and207

non-blocking behaviours of the event handlers, (iii) programmers have to hand-code elaborate208

plumbings between the interrupt-handlers and the event-queue and (iv) they are instances of209

clearly concurrent programs that are written in this style due to lack of concurrency support210

in the language.211

Although there are extensions of C to aid the concurrent behaviour of event-loops such as212

protothreads [7] or FreeRTOS Tasks, the first three listed problems still persist. In general,213

the main infinite event loop unnecessarily induces a tight coupling between unrelated code214

fragments (like the two separate handlers for GPIO1 and GPIO2) that additionally breaks215

down the abstraction boundaries between them.216

•Time. Many embedded applications need to be aware of time. Take the earlier example217

with the washing machine that does certain things at certain points in time along the wash218

cycle as an example. Going further, there are applications where the timing requirements219

are even stronger. In hard real-time systems the completion time of an operation determines220

the correctness of the program. Real-time programs, while concurrent, differ from standard221

concurrent programs in that they allow the programmer to override the fairness of a fair222

scheduler. For instance, if we look at the FreeRTOS Task API:223

Listing 5 The FreeRTOS Task API
224

1 BaseType_t xTaskCreate ( TaskFunction_t pvTaskCode ,225

2 const char * const pcName ,226

3 configSTACK_DEPTH_TYPE usStackDepth ,227

4 void * pvParameters ,228

5 UBaseType_t uxPriority , // Task priority229

6 TaskHandle_t * pxCreatedTask );230231

ECOOP 2022
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The fifth parameter in Line no. 5 accepts a static priority number, which a programmer232

uses to override the fairness of a task scheduler and customise the emergency of execution of233

each thread. However, with a limited set of priorities numbers (1 - 5) it is very likely for234

several concurrent tasks to end up with the same priority, leading the scheduler to order them235

fairly once again. A risk with priority-based systems is to run into the priority inversion236

problem [31], as explained in the Real-Time Java spec:237

If a lower-priority thread shares a resource with a higher-priority thread, and if that238

resource is guarded by a lock, the lower-priority thread may be holding the lock at239

the moment when the higher-priority thread needs it. In this case, the higher-priority240

thread is unable to proceed until the lower-priority thread has completed its work –241

and this can cause the higher-priority thread to miss its deadline.242

TinyTimber implements scheduling based on dynamically changing priorities [21]. The243

programmer can specify that an operation should take place within a window of time specified244

by a baseline and a deadline. The deadline time is used to prioritize operations with the245

earliest deadlines, so-called Earliest-Deadline-First scheduling.246

Time
Baseline B Deadline

Relative deadline D

object.method()

The figure above shows a TinyTimber timing window specified by the following code:247

248
1 WITHIN (B, D, &object , method , arg);249250

The code above says that the method method of the object object should be run no sooner251

than time B and preferably finish in an interval of time D. TinyTimber prioritises the252

execution of tasks with the earliest deadlines. It does not detect or capture a missed253

deadline. If catching missed deadlines is desired, watchdog tasks can be implemented by the254

programmer.255

2.1 Key Idea256

In SenseVM, we combine the concurrency and communication of CML with a possibility to257

specify timing windows inspired by TinyTimber. The channel-based communication of CML258

is also extended to encompass communication with interrupt-based and memory-mapped IO259

peripherals on the target microcontrollers.260

3 Programming for SenseVM261

Writing programs for SenseVM is currently done in a functional, eagerly-evaluated, statically-262

typed Caml-inspired language. Type declarations and signatures in the language syntactically263

resemble those of Haskell. The language is also indentation aware. Comments are expressed264

using --. In this section we show small examples to introduce the programming primitives.265

Most of the initial primitives are directly inherited from CML.266
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3.1 Spawning processes267

Just like in CML, a process (or thread) is started, "spawned", using the spawn primitive with268

the following type signature.269

spawn : (() → ()) → ThreadId
270

The spawn primitive takes a function of type () -> () as argument and returns a271

thread identifier. We currently do not use this ThreadId in our interface but envision future272

use that could provide information on the lifetime of a process.273

A function f that wishes to execute asynchronously is started by calling spawn f . In274

SenseVM, application-level processes are started by calling spawn from the main-method.275

The SenseVM scheduler is cooperative (syncT later makes this preemptive), where when a276

process encounters a synchronous, blocking message-passing call, it yields the control to the277

scheduler that then schedules other threads. Next, we introduce communication primitives278

that communicate via inter-process message-passing.279

3.2 Message passing280

The programming interface supports a synchronous style of message-passing adopted from281

Concurrent ML [25]. Synchronous message-passing involves communication along blocking282

constructs called channels. A channel can be created using the following function:283

channel : () → Channel t
284

A channel () call creates a typed channel along which a process can send or receive a285

message of type t.286

The Concurrent ML API for sending and receiving messages differs from other synchronous287

message-passing programming models like CSP [15]. The central idea of Concurrent ML is288

to break the act of synchronous communication into its two constituent steps:289

(i) Expressing the intent of communication.290

(ii) Synchronising the communication between the sender and receiver.291

In the first step the programmer creates a value of type Event. In Concurrent ML,292

an Event-value is a first-class citizen of the language akin to the treatment of higher-293

order functions in functional languages. Reppy describes an Event-value as a "first-class294

synchronous operation". Message sending and receiving in the context of these Event values295

have the following types:296

send : Channel a → a → Event ()
recv : Channel a → Event a

297

The Event construct was introduced to resolve a fundamental conflict that arises between298

procedural abstraction and the selective communication operation of CSP. We discuss the299

issue after introducing the choose operator in Section 3.4. Note that the operations send300

and recv are non-blocking and do not perform any actual communication.301

Given a value of type Event, the second step of synchronising between processes and302

initiating the actual communication is performed via the sync operation, whose type is:303

ECOOP 2022
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sync : Event a → a
304

The sync operation takes a value of type Event a and blocks until the communication305

intent encoded in the Event can be performed. Synchronous communication requires matching306

a message sender with a message receiver. So the process of synchronisation involves finding307

two processes that are attempting to communicate along a common channel, and upon finding308

such processes passing the message from the sender to the receiver. Until synchronisation309

happens between the two parties, the processes remain blocked, waiting for synchronisation.310

If we consider the standard type-signatures of message sending and receiving in CSP, they311

will be sendMsg : Channel a→ a→ () and recvMsg : Channel a→ a . Intuitively, we312

can draw an equivalence between the message passing in CSP and the Concurrent ML-based313

message passing using function composition:314

315
1 sync . (send c) ≡ sendMsg c316

2 sync . recv ≡ recvMsg317318

In Listing 6 the operators sync, send and recv are used to communicate between the319

foo and bar processes. The send and recv operations create values of type Event () and320

Event Int respectively. Note that in the function, the expression of a communication intent321

is separate from actual communication and an Event is simply a description of the intent.322

To turn the intent into actual communication, we use the sync operator.323

Listing 6 Communicating tasks
324

1 chan : Channel Int325

2 chan = channel ()326

3327

4 foo : () -> ()328

5 foo _ =329

6 let _ = sync (recv chan) in330

7 foo ()331

8332

9 bar : () -> ()333

10 bar _ =334

11 let _ = sync (send chan 1) in335

12 bar ()336

13337

14 main =338

15 let _ = spawn foo in339

16 let _ = spawn bar in340

17 ()341342

The illustration in Figure 2 shows the scheduling of the above program. Figure 2 shows343

the time-share of the processor owned by each process and also the interim time slots owned344

by the scheduler that decides which process to schedule when.345

The parts of the chart shaded in blue are the time slots where the scheduler decides which346

process to schedule next. If it finds all processes are blocked at a certain instant it can choose347

to go to sleep. Next, before looking at the choose operation for selective communication, we348

take a quick look at so-called post-synchronisation operations.349

3.3 Post-synchronisation operation350

The wrap function can be used to attach an operation (of type a→ b) that should be executed351

once the sync operator has completed synchronising an event. The type signature of wrap is:352
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Figure 2 Scheduling the program in Listing 6

wrap : Event a → (a → b) → Event b
353

The important feature of wrap is that the result of wrapping a function over an event is354

an event. This becomes particularly important when constructing composite events using355

the choose operation that we look at next.356

3.4 Selective communication357

To enable multi-party communication, synchronous message-passing models introduce a358

selective communication operator that races between two operations and selects the one359

that completes first. This enables the handling of communication with multiple participants360

without being unnecessarily blocked by the synchronous nature of the communication.361

However, Reppy identified a conflict that arises between selective communication and362

procedural abstraction [25]. The complication can be demonstrated via the example of a363

client-server communication protocol where the client follows the protocol - first send a364

message along a channel, reqCh, and only upon the success of the send will it accept the365

server response along the channel, respCh. Such a protocol can be expressed in synchronous366

models like CSP and then abstracted as a procedure like the following:367

368
1 clientCall : ( Channel a, Channel b) -> a -> b369

2 clientCall (reqCh , respCh ) a =370

3 let _ = sendMsg reqCh a371

4 in recvMsg respCh372373

Now imagine a scenario where the client is communicating with two servers and the first374

server is temporarily unavailable. In such an instance the sendMsg call in line no. 3 will block375

and as the sendMsg call has been abstracted away inside the procedure it is not possible to376

apply the select operation on it. Hence, for liveness the sendMsg operation should not be377

hidden in the procedure.378

However, if we expose the sendMsg operation, it goes against the principles of software379

abstraction where the internal operations of a protocol are leaked and can authorize the380

programmer to write unsafe operations like a sequence of two sendMsg calls that violates the381

protocol invariant (a send should always be followed by a receive). The Event construct of382

Concurrent ML resolves this issue elegantly by programming the abstraction as follows:383

ECOOP 2022
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1 clientCallEvt : ( Channel a, Channel b) -> a -> Event b
2 clientCallEvt (reqCh , respCh ) a =
3 wrap (send reqCh a) (λ _ -> sync (recv respCh ))

384

The clientCallEvt program above represents a server as a tuple of a request channel385

and a response channel. The use of wrap in clientCallEvt creates an event of type Event386

b (where b is the type of the values sent across the respCh). Send events have type Event387

() so the function (λ _ -> sync (recv respCh)) has type () -> b.388

With the above abstraction, we can introduce the choose operator that allows selecting389

between two events and synchronises the event that become synchronisable first. The type390

signature of choose is as follows:391

choose : Event a → Event a → Event a
392

Given two servers, server1 = (server1ReqCh, server1RespCh) and server2 = (server2ReqCh,393

server2RespCh), multi-party communication can be expressed without breaking the procedural394

abstraction using choose (clientCallEvt server1) (clientCallEvt server2).395

The return type of a choose call will still be Event, allowing us to compose and choose396

among several synchronous operations like choose (choose (choose ev1 ev2) ev3) ev4... When397

sync is applied to such a composite event it will race among all the events, ev1, ev2, ev3, ..,398

and synchronise on the operation that unblocks first.399

In Listing 7, the choose operation is applied on two recv events on line no. 9 in foo.400

The function foo is notably non-terminating and it waits for a message along either one of401

the two channels. The message sending processes, bar and baz terminate immediately after402

sending one message each.403

Listing 7 Selective communication
404

1 chanBar : Channel Int405

2 chanBar = channel ()406

3407

4 chanBaz : Channel Int408

5 chanBaz = channel ()409

6410

7 foo : () -> ()411

8 foo _ =412

9 let _ = sync ( choose (recv chanBar ) (recv chanBaz )) in413

10 foo () -- non - terminating414

11415

12 bar : () -> ()416

13 bar _ = sync (send chanBar 2) -- terminates417

14418

15 baz : () -> ()419

16 baz _ = sync (send chanBaz 1) -- terminates420

17421

18 main =422

19 let _ = spawn foo in423

20 let _ = spawn bar in424

21 let _ = spawn baz in425

22 ()426427

Figure 3 shows the processor occupancy between the three processes and the scheduler428

of SenseVM for Listing 7. The process foo blocks and yields the control to the scheduler,429

which schedules bar to send a message. The process bar sends a message and terminates430

but enables the unblocking of foo. Next foo takes the message, completes the recursion and431

blocks again for a new message, which is sent by baz the second time around. An interesting432

point is the third iteration of foo where it doesn’t have any sender, so it relinquishes control433
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to the scheduler that can decide to go to a power-saving mode.434

Figure 3 SenseVM using choose

3.5 Programming with IO435

When programming for SenseVM, IO is expressed using the same events as are used for436

inter-process communications. Each IO device is connected to the running program using a437

primitive we call spawnExternal as a hint that the programmer can think of, for example, an438

LED as a process that can receive messages along a channel. Each "external" process denotes439

an underlying IO device that is limited to send and receive messages along one channel.440

The spawnExternal primitive takes the channel to use for communication with software441

and a driver and returns a "ThreadId" for symmetry with spawn.442

spawnExternal : Channel a → Driver → ExternalThreadId
443

The first parameter supplied to spawnExternal is a designated fixed channel along which444

the external process shall communicate. The second argument requires some form of an445

identifier to uniquely identify the driver. This identifier for a driver tends to be architecture-446

dependent. For instance, when using low-level memory-mapped I/O, reads or writes to447

a memory address (within the same address space as the program memory) are used to448

communicate with a peripheral. So the unique memory address would be an identifier in that449

case. On the other hand, certain real-time operating system (such as FreeRTOS or Zephyr)450

can provide more high-level abstractions over a memory address. In SenseVM, we currently451

number each peripheral in monotonically increasing order, starting from 0. So the SenseVM452

spawnExternal API becomes:453
454

1 type DriverNo = Int455

2 spawnExternal : Channel a -> DriverNo -> ExternalThreadId456457

In the rest of the paper, we will use suggestive names for drivers like led0, uart1, etc458

instead of plain integers for clarity. We have ongoing work, in SenseVM, to parse a file459

describing the target board/MCU system, automatically number the peripherals and emit460

typed declaration like led0 = LED 0 that can be used in the spawnExternal API.461
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Fig 4 provides an intuition of the I/O interactions within SenseVM. The software processes462

interact with each other as well as send and receive messages from the external hardware463

processes, using the very same message-passing API. The typed channels prevent the passing464

of ill-formed/garbage messages to the hardware processes. Certain drivers could be exclusively465

read-only/write-only, like the driver for a temperature sensor that is read-only. However,466

if a programmer attempts to send a message to such a driver, the failure handling is467

implementation-dependent. In SenseVM we ignore ill-formed messages.468

Figure 4 Software processes and hardware processes interacting

To demonstrate the I/O API for asynchronous drivers, we present a standard example of469

the button-blinky program from Listing 3. The program matches a button state to an led so470

that when the button is down, the LED is on, otherwise the LED is off:471

Listing 8 Button-Blinky on the SenseVM
472

1 butchan : Channel Int473

2 butchan = channel ()474

3475

4 ledchan : Channel Int476

5 ledchan = channel ()477

6478

7 glowled : Int -> ()479

8 glowled i = sync (send ledchan i)480

9481

10 foo : ()482

11 foo =483

12 let _ = sync (wrap (recv butchan ) glowled ) in484

13 foo485

14486

15 main =487

16 let _ = spawnExternal butchan 0 in488

17 let _ = spawnExternal ledchan 1 in489

18 foo490491

The above program represents an asynchronous, callback-based application in an entirely492

synchronous framework. The same application written in C, on top of the Zephyr OS, is493

more than 100 lines of callback-based code [10]. A notable aspect of the above SenseVM494

program is the lack of any callback-registration mechanism. We show the timing chart of495

Listing 8 below.496

Comparing Listing 8 with Fig. 7, the program arrives at line 12 and blocks while awaiting497

a message from the button driver. At this point, the control of the program is relinquished498

to the scheduler and if it doesn’t find any other threads ready to proceed, is free to go to499

sleep to reduce power usage. The button driver is internally implemented using interrupts500

that fire on both button-down and button-up hardware events. When an interrupt arrives,501

the driver notifies the scheduler and the scheduler relays the information about the button502

press to the process foo. foo resumes its execution from line 12 by message-passing the503

button input to the LED driver in line 8. The LED driver, being synchronous, accepts the504
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Figure 5 SenseVM using spawnExternal

input immediately, unblocking the program and proceeding to the tail-recursive call at line505

13 that continues the loop infinitely.506

3.6 Programming with Time507

Real-time languages and frameworks generally provide APIs to override the fairness of a508

fair scheduler. A typical fair scheduler abstracts away the details of ordering its constituent509

processes (or threads). However, in a real-time scenario a programmer wants to precisely510

control the response-time of certain operations. So the natural intuition for real-time C-511

extensions like Free-RTOS Tasks or languages like Ada is to delegate the scheduling control512

to the programmer by allowing them to attach priorities to various processes. If we approach513

real-time programming with a similar API, we can attempt the following:514

515
1 main = ...516

2 spawn process1 HIGH;517

3 spawn process2 MEDIUM ;518

4 spawn process3 MEDIUM519520

The HIGH and MEDIUM tags can indicate the order in which a tie is to be broken by the521

scheduler. However, with a limited number of tags (HIGH, MEDIUM, LOW) it is very likely for522

several processes to end up with the same priority, leading the scheduler to order them fairly523

once again.524

Another complication that crops up in the context of priorities is the priority inversion525

problem [31]. Priority inversion is a form of resource contention where a high-priority thread526

gets blocked on a resource held by a low-priority thread, thus allowing a medium priority527

thread to take advantage of the situation and get scheduled first. The outcome of this528

scenario is that the high-priority thread gets to run after the medium-priority thread, leading529

to possible program failures.530

The SenseVM approach to time takes inspiration from the TinyTimber kernel [21] that531

implements dynamic priorities based on the deadline of a task. Our programming interface532

allows a programmer to specify a time window (of the wall-clock time) at which we want a533

particular thread to run. The timing window consists of a baseline time and a deadline time.534

Once the baseline time has been reached the scheduler will be made aware that the thread535
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is ready to execute. Threads that are ready to execute are ordered according to deadline,536

implementing earliest deadline first scheduling. In essence, a thread becomes increasingly537

more prioritised as its deadline approaches. Just like the TinyTimber kernel, SenseVM does538

not track missed deadlines and is thus implementing a soft approach to real-time execution.539

Being a bytecode interpreting VM with a mark and sweep garbage collector, currently, is540

also a challenge for the implementation of application with very tight and precise timing541

requirements. We discuss this further in Section 8, Future Work.542

We extend our interface by adding a single operator, the timed synchronisation operator543

- syncT, for expressing time. The type signature of syncT is given below:544

syncT : Time → Time → Event a → a
545

Comparing the type signature of syncT with that of sync :546
547

1 syncT : Time -> Time -> Event a -> a548

2 sync : Event a -> a549550

The two extra arguments to syncT specify a lower and upper bound on the time of551

synchronisation of an event. We assume the existence of a standard wall-clock time source552

that can reliably supply us with an exact timestamp at the desired level of granularity. The553

two arguments to syncT, of type Time, express the relative times calculated from the current554

wall-clock time. The first argument represents the relative baseline - the earliest time instant555

from which the event synchronisation should begin. The second argument specifies the556

relative deadline i.e the latest time instant (starting from the baseline) by which the event557

synchronisation should preferably complete. For instance, if we take an event, timed_ev,558

and write :559
560

1 syncT (msec 50) (msec 20) timed_ev561562

The above means that the synchronisation of timed_ev should begin 50 milliseconds from563

now (what now means is explained below) and the synchronisation should complete within 20564

milliseconds of its beginning. Synchronisation, in this framework, implies the entire process565

of synchronous communication, including sending a message along a channel, blocking till a566

receiver is found, passing the message from the sender to the receiver and then unblocking567

both the sender and the receiver. We illustrate the synchronisation timeline in Figure 6.568

Figure 6 Timed synchronisation in action

The now concept is based on a thread’s local view of what time it is. This thread-local569

time (Tlocal) is always less than or equal to wall-clock time (Tabsolute). Wall-clock time is570
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maintained by a continuously running monotonically increasing timer that is started when571

the SenseVM system boots up. When a thread is spawned, its thread-local time, Tlocal, is572

set to the wall-clock time, Tabsolute.573

While a thread is running its local time is frozen and unchanged until the thread executes574

a timed synchronisation, a syncT operation where time progresses to Tlocal + baseline.575

576
1 process1 _ =577

2 let _ = s1 in -- Tlocal = 0578

3 let _ = s2 in -- Tlocal = 0579

4 let _ = syncT (msec 50) (usec 10) ev1 in580

5 process1 () -- Tlocal = 50 msec581582

The example above illustrates that the untimed operations s1 and s2 have no impact on583

the thread’s view of what time it is. In essence these operations are considered to take no584

time, which of course is not true. This is however an assumption that SenseVM shares with585

other systems such as ChucK [34] and the Sparse Synchronous Model [8]. Most importantly,586

this is an assumption that is very good to make, as it helps with controlling jitter in the587

timing as long as the timing windows specified on the synchronisation is large enough to588

contain the execution time of s1, s2, the synchronisation step and the recursive call.589

So, the concept of now refers to the thread-local time (Tlocal) and executing a syncT590

progresses thread-local time to now + baseline. For this to make sense, local time and591

wall-clock time must match up at certain points. To ensure that thread-local time and592

wall-clock time matches up an alarm is set in the VM at the wall-clock time now + baseline593

when a syncT is encountered. The thread is then yielded until that alarm goes off. When594

the alarm goes off, wall-clock time is exactly now + baseline and the thread is made ready595

to execute again with updated thread-local time.596

To see how this approach to timing helps with jitter, imagine if the alarm set at syncT597

was set to wallclock time + 50ms. In this case time progresses as we execute s1 and s2 as598

well as in the tail-recursive call to process1, any variability in this would manifest as jitter599

on the synchronisation and would keep on adding with each recursive iteration. With our600

approach, however, and as long as any time spent on untimed operations in process1 is less601

than the timing window, jitter should be under control. To guarantee this on a larger scale602

with many involved processes and timing windows is not easy and would require worst-case603

execution time and schedulability analyses, which is beyond the scope of this work.604

3.6.1 Blinky605

We present the popular blinky example, which constitutes blinking an LED at a certain606

frequency. The program switches the LED ON for 1 second and then switches it OFF for 1607

second and so on. Following show the program that runs on the STM32F4-discovery board -608

Listing 9 Blinky with syncT
609

1 not : Int -> Int610

2 not 1 = 0611

3 not 0 = 1612

4613

5 ledchan : Channel Int614

6 ledchan = channel ()615

7616

8 sec : Int -> Int617

9 sec n = n * 1000000618

10619

11 usec : Int -> Int620

12 usec n = n -- the unit -time in SenseVM621

13622
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14 foo : Int -> ()623

15 foo val =624

16 let _ = syncT (sec 1) (usec 1) (send ledchan val) in625

17 foo (not val)626

18627

19 main =628

20 let _ = spawnExternal ledchan 1 in629

21 foo 1630631

In the above program, we have foo as the only software process and one external hardware632

process for the LED driver that is restricted to communicate along the ledChan channel.633

Figure 7 below demonstrates the timing chart of the above program. This chart is more634

involved as it has two clocks. The actual wall-clock time, Tabsolute, is represented along the635

X-axis while the process-local clock, Tlocal, for the process foo is shown inside the body of636

green chart representing foo.637

Figure 7 SenseVM timeline for the blinky program

As shown in Fig 7 the Tlocal clock is initialised to the time at the very beginning of the638

system that is 0. When the program arrives at the syncT statement, an alarm is set for the639

time at which the VM should begin attempting communication with the LED driver. The640

alarm is set exactly at the 1-second mark, calculated from the Tlocal clock, which removes641

the jitter associated with other statement executions and VM overheads.642

The timer interrupt arrives at the 1-second mark and the VM begins communication with643

the LED driver taking δ3 seconds. Once the communication is initiated, the deadline counter644

becomes effective. The LED driver process take TLED seconds to execute, and the scheduler645

takes an additional δ4 time units to unblock the process foo. So, the deadline requested646

to the runtime follows the relation - δ4 + TLED < 1 usec. Finally, Tlocal is incremented by647

the relation Tlocal = Tlocal + baseline, where the baseline is 1 second in our case and the648

program continues.649

Having introduced the concurrency, I/O and timing APIs of SenseVM, we shall next look650

at example applications running on the VM.651
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4 Finite-State Machines on the SenseVM652

We shall now illustrate two larger examples of expressing state machines involving callback-653

based APIs running on the SenseVM. For running our examples, we choose the NRF52840DK654

microcontroller board, which comes equipped with four buttons and four LEDs. We particu-655

larly choose the button peripheral because its drivers have a callback-based API that could656

lead to non-linear control-flows within the program. The programs presented in this section657

notably doesn’t elide any part of the program and can be compiled and run unmodified on658

an NRF52840DK board.659

4.1 Four-Button-Blinky660

We build on the button-blinky program from Listing 8 presented in Section 3.5. The original661

program, upon a single button-press, would light up an LED corresponding to that press and662

switch off upon the button release. We now extend that program to produce a one-to-one663

mapping between four LEDs and four buttons such that button1 press lights up LED1,664

button2 press lights up LED2, button3 press lights up LED3 and button4 press lights up665

LED4 (while the button releases switch off the corresponding LEDs). Figure 8 shows the666

state-machine diagram of this application.667

Figure 8 The Four-Button-Blinky FSM

Fig 8 shows a case where four separate state machines, operating on a single MCU668

board, can be composed together into a single function on SenseVM. As each button-LED669

combination has its own state machine we can use the choose operator to compose the four670

combinations. Listing 10 show the entire four-button-blinky program running on SenseVM.671

Listing 10 The Four-Button-Blinky program running on the SenseVM
672

1 butchan1 = channel ()673

2 butchan2 = channel ()674

3 butchan3 = channel ()675

4 butchan4 = channel ()676

5677

6 ledchan1 = channel ()678

7 ledchan2 = channel ()679

8 ledchan3 = channel ()680

9 ledchan4 = channel ()681

10682

11 press1 = wrap (recv butchan1 ) (λ x -> sync (send ledchan1 x))683

12 press2 = wrap (recv butchan2 ) (λ x -> sync (send ledchan2 x))684

13 press3 = wrap (recv butchan3 ) (λ x -> sync (send ledchan3 x))685

14 press4 = wrap (recv butchan4 ) (λ x -> sync (send ledchan4 x))686

15687

16 anybutton = choose press1 ( choose press2 ( choose press3 press4 ))688

17689

18 program : ()690

19 program =691

20 let _ = sync anybutton in692

21 program693

22694

23 main =695
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24 let _ = spawnExternal butchan1 0 in696

25 let _ = spawnExternal butchan2 1 in697

26 let _ = spawnExternal butchan3 2 in698

27 let _ = spawnExternal butchan4 3 in699

28 let _ = spawnExternal ledchan1 4 in700

29 let _ = spawnExternal ledchan2 5 in701

30 let _ = spawnExternal ledchan3 6 in702

31 let _ = spawnExternal ledchan4 7 in703

32 program704705

Listing 10 utilises eight hardware process, four to model the LED drivers and the remaining706

four for the buttons. The key composition happens on Line no. 16 where we compose the707

four state machines together using the choose operator. The main body of the program708

synchronises the resulting event (anybutton) and keeps the main-loop alive by calling itself.709

4.2 A more intricate FSM710

We now construct a more intricate finite-state machine involving intermediate states that can711

move to an error state if the desired state-transition buttons are not pressed. We configure712

our button driver now to send only one message per button press-and-release. So there is no713

separate button-on and button-off signal but one signal per button.714

In this FSM, we glow the LED1 upon consecutive presses of button1 and button2. We715

use the same path to turn LED1 off. However, if a press on button1 is followed by a press of716

button 1 or 3 or 4, then we move to an error state indicated by LED3. We use the same path717

to switch off LED3. In a similar vein, consecutive presses of button3 and button4 lights up718

LED2 and button3 followed by button 1 or 2 or 3 lights up the error LED - LED3. Figure 9719

demonstrates the FSM diagram of this application omitting self-loops in the OFF state.720

Figure 9 A complex state machine

We encode the FSM of Fig 9 on the SenseVM in Listing 11. This FSM can be viewed as721

a composition of two separate finite state machines, one on the left side of the OFF state722

involving LED2 and LED3 and one on the right side involving LED1 and LED3. Once again723

we utilise choose operator to compose these two state machines.724

Listing 11 The complex state machine running on the SenseVM
725

1 butchan1 : Channel Int726

2 butchan1 = channel ()727

3 butchan2 : Channel Int728

4 butchan2 = channel ()729

5 butchan3 : Channel Int730

6 butchan3 = channel ()731

7 butchan4 : Channel Int732

8 butchan4 = channel ()733
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9734

10 ledchan1 : Channel Int735

11 ledchan1 = channel ()736

12 ledchan2 : Channel Int737

13 ledchan2 = channel ()738

14 ledchan3 : Channel Int739

15 ledchan3 = channel ()740

16 ledchan4 : Channel Int741

17 ledchan4 = channel ()742

18743

19 not : Int -> Int744

20 not 1 = 0745

21 not 0 = 1746

22747

23 errorLed x = ledchan3748

24749

25 fail1ev = choose (wrap (recv butchan1 ) errorLed )750

26 ( choose (wrap (recv butchan3 ) errorLed )751

27 (wrap (recv butchan4 ) errorLed ))752

28753

29 fail2ev = choose (wrap (recv butchan1 ) errorLed )754

30 ( choose (wrap (recv butchan2 ) errorLed )755

31 (wrap (recv butchan3 ) errorLed ))756

32757

33 led1Handler x =758

34 sync ( choose (wrap (recv butchan2 ) (\x -> ledchan1 )) fail1ev )759

35760

36 led2Handler x =761

37 sync ( choose (wrap (recv butchan4 ) (\x -> ledchan2 )) fail2ev )762

38763

39 led : Int -> ()764

40 led state =765

41 let fsm1 = wrap (recv butchan1 ) led1Handler in766

42 let fsm2 = wrap (recv butchan3 ) led2Handler in767

43 let ch = sync ( choose fsm1 fsm2) in768

44 let _ = sync (send ch (not state)) in769

45 led (not state)770

46771

47 main =772

48 let _ = spawnExternal butchan1 0 in773

49 let _ = spawnExternal butchan2 1 in774

50 let _ = spawnExternal butchan3 2 in775

51 let _ = spawnExternal butchan4 3 in776

52 let _ = spawnExternal ledchan1 4 in777

53 let _ = spawnExternal ledchan2 5 in778

54 let _ = spawnExternal ledchan3 6 in779

55 let _ = spawnExternal ledchan4 7 in780

56 led 0781782

In Listing 11, the led1Handler1 and ledHandler2 functions capture the intermediate783

states after one button press, when the program awaits the next button press. The error784

states are composed using the choose operator in the functions fail1ev and fail2ev.785

The compositional nature of our framework is visible in line no. 43 where we compose786

the two state machines, fsm1 and fsm2, using the choose operator. Synchronising on this787

composite event returns the LED channel (demonstrating a higher-order approach) on which788

the process should attempt to write. This program is notably a highly callback-based, reactive789

program that we have managed to represent in an entirely synchronous framework.790

In the next section we look at a music playing application example that notably uses the791

syncT operator and the rest of the functions from our programming interface.792
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5 A soft-realtime music playing example793

We present a soft-realtime music playing exercise from a Real-Time Systems course, running794

on the SenseVM. We choose a simple tune, the first fourteen notes of the popular nursery795

rhyme - "Twinkle, Twinkle, Little Star". At the end of the fourteen notes, our program circles796

back and start playing the tune from the beginning.797

We run this program on the STM32F4-discovery board that comes with a 12-bit digital-798

to-analog converter (DAC), which we connect to a speaker as a peripheral. We can write a799

value between 0 to 4095 to the DAC driver that gets translated to a voltage between 0 to 3V800

on the DAC output pin.801

To produce a sound note we need to periodically write a sequence of 1’s and 0’s to the802

DAC driver. However, to make the produced note sound musical to the human ear, the803

periodic rate at which our process writes to the DAC driver is very important, and this is804

where the real-time aspect of the application comes in. The human ear recognises a note805

produced at a certain frequency as a musical note. Frequency is related to the periodic rate806

of a process by the relation:807

Period = 1/Frequency
808

For instance, the musical note A occurs at a frequency of 440 Hz, which implies it has a809

time period of 2272 µseconds. From the point of view of the software, we are actually writing810

two values, a 1 and a 0, so we need to further divide the value by 2 to determine our rate of811

each individual write. If we call the rate of our writes as TimeW rite, we get the relation -812

TimeW rite = Period/2 = 1/(2 ∗ Frequency)
813

Now that we know how to calculate the periodicity of our write in relation to the frequency,814

we need to know (i) what are the musical notes that occur in the "Twinkle, Twinkle" rhyme815

and (ii) what are the frequencies corresponding to those notes so that we can calculate the816

TimeW rite value from the frequency. The musical notes of the "Twinkle, Twinkle" tune are817

well known and is given below:818

Twinkle, Twinkle - C C G G A A G F F E E D D C
819

Given the above notes, the frequency of each of these notes are also well known. In820

Table 1 we show our calculation of the TimeW rite value for the various musical notes.821

Note Frequency (Hz) Period (µsec) TimeW rite (µsec)

C 261 3830 1915
D 294 3400 1700
E 329 3038 1519
F 349 2864 1432
G 392 2550 1275
A 440 2272 1136
B 493 2028 1014

Table 1 Musical notes, their frequencies and time periods



Anonymous author(s) 23:21

Now we need to specify the time duration of each note. At the end of each note’s duration822

period, we change the frequency of writes to the DAC driver. For instance, consider the823

transition from the second to the third note of the tune from C to G. If the note duration824

for C is 1000 milliseconds then that implies our writing frequency should be 261 Hz for825

1000 milliseconds, and then at the 1001st millisecond the frequency changes to 392 Hz (G’s826

frequency).827

When describing a proper musical etude, each note should be ideally mapped to its828

distinct duration in the program. However, to keep our illustration slightly simpler we set a829

static note duration of 500 milliseconds for each note.830

Listing 12 shows the entire program running on the SenseVM that cyclically plays the831

"Twinkle, Twinkle, Little Stars" tune. The first 15 lines consists of declarations initialising a832

List data type and other standard library functions. Lines 39 - 60 consist of the principal logic833

of the program. Listing 12 can be compiled and run, unaltered, on an STM32F4-discovery834

board.835

Listing 12 The Twinkle, Twinkle tune running on the SenseVM
836

1 data List a where837

2 Nil : List a838

3 Cons : a -> List a -> List a839

4840

5 head : List a -> a841

6 head (Cons x xs) = x842

7843

8 tail : List a -> List a844

9 tail Nil = Nil845

10 tail (Cons x xs) = xs846

11847

12 not : Int -> Int848

13 not 1 = 0849

14 not 0 = 1850

15851

16 msec : Int -> Int852

17 msec t = t * 1000853

18854

19 usec : Int -> Int855

20 usec t = t856

21857

22 after : Int -> Event a -> a858

23 after t ev = syncT t 0 ev859

24860

25 twinkle : List Int861

26 twinkle = Cons 1915 (Cons 1915 (Cons 1275 (Cons 1275 (Cons 1136862

27 (Cons 1136 (Cons 1275 (Cons 1432 (Cons 1432 (Cons 1519863

28 (Cons 1519 (Cons 1700 (Cons 1700 (Cons 1915 Nil)))))))))))))864

29865

30 dacC : Channel Int866

31 dacC = channel ()867

32868

33 noteC : Channel Int869

34 noteC = channel ()870

35871

36 noteDuration : Int872

37 noteDuration = msec 500873

38874

39 playerP : List Int -> Int -> () -> ()875

40 playerP melody n void =876

41 if (n == 14)877

42 then let _ = after noteDuration (send noteC (usec (head twinkle ))) in878

43 playerP twinkle 2 void879

44 else let _ = after noteDuration (send noteC (usec (head melody ))) in880

45 playerP (tail melody ) (n + 1) void881
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46882

47883

48 tuneP : Int -> Int -> () -> ()884

49 tuneP timePeriod vol void =885

50 let newtp =886

51 after timePeriod ( choose (recv noteC)887

52 (wrap (send dacC (vol * 4095))888

53 (λ _ -> timePeriod ))) in889

54 tuneP newtp (not vol) void890

55891

56 main =892

57 let _ = spawnExternal dacC 0 in893

58 let _ = spawn (tuneP (usec (head twinkle )) 1) in894

59 let _ = spawn ( playerP (tail twinkle ) 2) in895

60 ()896897

Our application consists of two software processes and one external hardware process.898

The TimeW rite values of each of the fourteen notes are represented as the list twinkle899

on Lines 25-28. We use two channels - dacC to communicate with the DAC and noteC to900

communicate between the two software processes. Looking at what each software process is901

doing -902

playerP. The playerP process runs at the rate of 500 milliseconds per cycle. It wakes903

up every 500 millisecond, traverses the list twinkle one element at a time and sends904

the value of that element (the TimeW rite value) along the noteC channel. As the list905

contains 14 notes, playerP circles back to the head of the list after 14 notes.906

tuneP. The tuneP process is responsible for actually creating the sound. Its running rate907

varies depending on the note that is being played. For instance, when playing note C,908

it will write to the DAC at at a rate of 1915 microseconds-per-write. However, upon909

receiving a new value of TimeW rite along noteC, it changes its write frequency to the910

new TimeW rite value resulting in changing the note of the song.911

Owing to the different time periods of the two processes, their Tlocal clock progresses at912

different rates. In Figure 10 we visualise the message passing that occurs between the two913

software process and the hardware process when transitioning from the second note C to the914

third note G.915

Figure 10 Moving from the note C to note G
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As the playerP process runs once every 500 milliseconds, the tuneP process completes916

500 ∗ 103/1915 = 261cycles when playing the note C. For the next note, G, the TimeW rite917

value changes to 1432 microseconds and the corresponding write frequency changes to 392918

cycles and the process cyclically carries on.919

There is an additional factor of the pitch at which we play our song. We play this tune at920

the standard A440 Stuggart pitch that corresponds to playing the note A at a frequency of921

440 Hz (see Table 1). If we wish to play the music at a higher pitch then that would involve922

increasing the frequency of our writes, however, there exists a threshold frequency at which923

SenseVM cannot meet the real-time deadlines and jitters start getting introduced into the924

tune. We discuss such evaluations on our application’s performance in Section 7. In the925

next section we shall look at the design and implementation of the various components of926

SenseVM.927

6 Design and Implementation928

We discuss the design and implementation of our bytecode-interpreted virtual machine -929

SenseVM. The execution unit of SenseVM is based on the Categorical Abstract Machine930

(CAM) [6], as explained by Hinze [14]. CAM supports the cheap creation of closures, as a931

result of which SenseVM can support a functional language quite naturally. We start by932

giving a general overview of the compilation and runtime pipeline of SenseVM.933

6.1 System Overview934

Figure 11 shows the architecture of SenseVM. The whole pipeline consists of three major935

components - (i) the frontend, (ii) the middleware and (iii) the backend.936

Figure 11 The compiler and runtime for SenseVM

Frontend. We support a statically-typed, eagerly-evaluated, Caml-like functional language937

on the frontend. The language comes equipped with Hindley-Milner type inference. The938

polymorphic types are monomorphised at compile-time. The frontend module additionally939

runs a lambda-lifting pass to reduce the heap-allocation of closures.940

Middleware. The frontend language gets compiled to an untyped lambda-calculus-based941

intermediate representation. This intermediate representation is then further compiled down942

to the actual bytecode that gets interpreted at runtime. The generated bytecode emulates943

operations on a stack machine with a single environment register that holds the final value944

of a computation. This module generates specialised bytecodes that reduce the environment945
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register-lookup using an operational notion called r-free variables described by Hinze [14].946

Followed by the bytecode generation, a peephole-optimisation pass is run on the bytecode that947

applies further optimisations like β-reduction and last-call optimisation [14] (a generalisation948

of tail-call elimination).949

Backend. The backend module is the principal component of the SenseVM. It can be950

further classified into two distinct segments - (i) the high-level modules, (ii) the low-level951

OS/driver support and a low-level bridge connecting the two segments.952

High-Level Modules. The high-level modules include an interpreter written in C99 (for953

portability) that operates on a fixed-size stack with an environment register. To emulate954

multiple threads/processes, SenseVM consists of multiple contexts, where each context955

holds its own fixed-size stack, the environment register and a program counter to indicate956

which bytecode is being interpreted. Owing to memory constraints in embedded systems,957

we restrict the VM to contain a fixed number of contexts. A context also holds two958

additional registers - one to indicate the process-local clock (Tlocal) and the second register959

to hold the deadline of that specific context (or thread).960

An important part of the high-level modules is a garbage-collected heap to support closures961

and other composite values like tuples, algebraic data types, etc. The heap is structured962

as a list made of uniformly-sized tuples. For garbage collection, SenseVM utilises a mark-963

and-sweep algorithm with the Hughes lazy-sweep optimisation [16] that frees the memory964

on demand to keep the mark-and-sweep pass shorter. Another optimisation applied to our965

GC is the Deutsch-Schorre-Waite algorithm [18, 26] that enables a pointer-reversal-based966

algorithm that doesn’t require extra stack space to complete the marking phase of our967

garbage collector.968

Low-level OS/drivers. The lowest level of SenseVM uses a real-time operating system969

that provides drivers for interacting with the various peripherals. The low-level is not970

restricted to use any particular OS, as demonstrated in our examples using both the971

Zephyr-OS and ChibiOS. The low-level interacts with the high-level components via a972

bridge interface that we discuss in depth in Section 6.6.973

6.1.1 Concurrency, I/O and Timing bytecodes974

For accessing the operators of our programming interface as well as any general runtime-based975

operations, SenseVM has a dedicated bytecode - CALLRTS n, where n is a natural number976

to disambiguate between operations. Table 2 shows the bytecodes corresponding to our977

programming interface.978

A notable aspect is the handling of the syncT operation, which gets compiled into two979

separate bytecodes. The first bytecode interpretation (CALLRTS 8) calculates the timing980

window, in terms of absolute time, at which a thread should run. It then schedules the thread981

to run at that exact time such that when it finally runs, it encounters the synchronisation982

bytecode (CALLRTS 4) as the next bytecode to be interpreted (discussed in depth in983

Section 6.4). We next look at the runtime implementation of the message passing-operations984

within the Event framework.985

6.2 Message-passing with events986

All forms of communication and I/O in SenseVM operate via synchronous message-passing.987

However, a distinct aspect of SenseVM’s message-passing is the separation between the988

intent of communication and the actual communication. When we describe the intent of989

communication we create a value of type Event.990
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Operation Bytecode

spawn CALLRTS 0
channel CALLRTS 1

send CALLRTS 2
recv CALLRTS 3
sync CALLRTS 4

choose CALLRTS 5
spawnExternal CALLRTS 6

wrap CALLRTS 7

syncT CALLRTS 8;
CALLRTS 4

Table 2 Concurrency, I/O and Timing bytecodes

An event-value, like a closure, is a concrete runtime value allocated on the heap. The991

fundamental event-creation primitives are send and recv, which Reppy calls base-event992

constructors [25]. The event composition operators like choose and wrap operate on these993

base-event values to construct larger events. When a programmer attempts to send or receive994

a message, an event-value captures the channel number on which the communication was995

desired. When this event-value is synchronised (synchronisation is discussed in the next996

section), we use the channel number as an identifier to match between prospective senders997

and receivers. Listing 13 shows the heap representation of an event-value as the the type998

event_t and the information that the event-value captures on the SenseVM.999

Listing 13 Representing an Event in SenseVM
1000

1 typedef enum {1001

2 SEND , RECV1002

3 } event_type_t ;1003

41004

5 typedef struct {1005

6 event_type_t e_type ; // 8 bits1006

7 UUID channel_id ; // 8 bits1007

8 } base_evt_simple_t ;1008

91009

10 typedef struct {1010

11 base_evt_simple_t evt_details ; // stored with 16 bits free1011

12 cam_value_t wrap_func_ptr ; // 32 bits1012

13 } base_event_t ;1013

141014

151015

16 typedef struct {1016

17 base_event_t bev; // 32 bits1017

18 cam_value_t msg; // 32 bits; NULL for recv1018

19 } cam_event_t ;1019

201020

21 typedef heap_index event_t ;10211022

An event is essentially a linked list, and the composition operation choose adds more1023

nodes to this list. Each element of the list captures (i) the message that is being sent or1024

received, (ii) any function that is wrapped around the base-event using wrap, (iii) the channel1025

being used for communication and (iv) an enum to distinguish whether the base-event is a1026

send or recv. Fig 12 visualises an event upon allocation to the SenseVM heap.1027

The linked-list, as shown above, is the canonical representation of an Event-type. It can1028

represent any complex composite event. For instance, if we take an example composite event1029
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Figure 12 An event on the SenseVM heap

that is created using the base-events, e1, e2, e3 and a wrapping function wf1, it can always1030

be rewritten to its canonical form.1031
1032

1 choose e1 (wrap ( choose e2 e3) wf1)1033

21034

3 -- Rewrite to canonical form --1035

41036

5 choose e1 ( choose (wrap e2 wf1) (wrap e3 wf1))10371038

The choose operation can simply be represented as consing on the event list. After1039

expressing the intent of communication as events, the next operation involves synchronising1040

an event via sync.1041

6.3 Synchronising events1042

The synchronisation operation sync is the most elaborate operation on the SenseVM. It1043

accepts an event as an argument, which is represented as an event-list. The algorithm1044

traverses this event list, detects the base-event that has a sender or receiver blocked on1045

communication and passes the message between the two parties. Algorithm 1 provides a1046

high-level, bird’s eye view of the synchronisation algorithm.1047

Algorithm 1 The synchronisation algorithm

Data: eventList

ev ← findSynchronisableEvent(eventList);
if ev ̸= ∅ then

syncNow(ev);
else

block(eventList);
dispatchNewThread();

end

We will begin explaining the synchronisation algorithm by looking at thefindSynchronisableEvent1048

function first. To describe this function we need to understand the structure of a channel.1049

A channel constitutes of two queues, (i) a send queue and (ii) a receive queue, which track1050

the thread-id of the senders and receivers respectively. So the actual message is never1051

held by a channel. For communication with a hardware peripheral, a channel tracks the1052

driver number of the communicating driver. With this information we can now describe1053

findSynchronisableEvent in Algorithm 2.1054

The l lBridge mentioned above refers to the low-level bridge that facilitates reading and1055

writing from hardware peripherals. We discuss it in more detail in Section 6.6.1056
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Algorithm 2 The findSynchronisableEvent function

Data: eventList

Result: A synchronisable event or ∅
foreach e ∈ eventList do

if e.channelNo communicating with driver then
if llBridge.driver readable/writeable? then

return e;
end

else
if e.baseEventType == SEND then

if ¬isEmpty(e.channelNo.recvq) then
return e

end
else if e.baseEventType == RECV then

if ¬isEmpty(e.channelNo.sendq) then
return e

end
else return ∅; /* Impossible case */

end
end
return ∅ ; /* No synchronisable event found */

When the findSynchronisableEvent function is unable to find any threads ready for1057

synchronisation it blocks all the base-events that make up an event. Algorithm 3 shows the1058

block function, which does the blocking.1059

Algorithm 3 The block function

Data: eventList

foreach e ∈ eventList do
if e.baseEventType == SEND then

e.channelNo.sendq.enqueue(currentThread);
else if e.baseEventType == RECV then

e.channelNo.recvq.enqueue(currentThread);
else Do nothing; /* Impossible case */

end

Once the block function registers the current thread-id in the respective channels associated1060

with the base events, the next operation is dispatching a new thread. The dispatchNewThread1061

function does that by dequeueing off an important data structure of the SenseVM - the ready1062

queue or readyQ. It is a priority queue containing thread-ids, arranged in the ascending order1063

of their respective deadlines. So the thread with the most urgent deadline will be the first1064

element on the readyQ. Threads with no deadline or timing requirements are arranged in1065

a FIFO order. When the readyQ is empty, the VM relinquishes the control back to the1066

underlying OS, which can then choose to run on a low-power mode as all threads are blocked.1067

When two threads are communicating, the first one to be scheduled will be blocked1068

as it did not find any corresponding thread for communication. However, when dispatch-1069

NewThread dispatches the second thread, the findSynchronisableEvent function will return1070
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Algorithm 4 The dispatchNewThread function

Data: eventList

if readyQ ̸= ∅ then
threadId← dequeue(readyQ);
currentThread = threadId;

else
relinquish control to the underlying OS

end

a synchronisable event and the syncNow operation does the actual message passing. We1071

describe the algorithm of syncNow in Algorithm 5 below.1072

This completes our overview of the sync operation. We next discuss how we handle the1073

timing aspect of SenseVM.1074

6.4 Timed synchronisation of events1075

The timed-synchronisation operator, syncT, handles the timing aspects of SenseVM. As1076

discussed in Section 6.1.1, syncT is compiled down to two bytecodes. The first bytecode1077

operation, referred to as the TIME bytecode, reads the relative baseline and deadline values1078

and accordingly schedules the thread’s execution.1079

An important data structure for interpreting the TIME bytecode is the wait queue or1080

waitQ. Just like the readyQ, this is another priority queue that holds thread-ids but unlike1081

readyQ, it is arranged by the ascending order of baseline. So the thread that is supposed to1082

begin the earliest will be at the head of the waitQ.1083

Another important runtime function is the setAlarm function built upon the SenseVM1084

timing subsystem (Section 6.7). As the name implies, this operation allows setting an alarm1085

for the Tabsolute value at which we want to wake a thread. An alarm interrupt arrives at that1086

time and the thread gets woken up. We can now present Algorithm 6 that illustrates how the1087

SenseVM runtime handles the TIME bytecode. An important heuristic used in our algorithm1088

is the SET_ALARM_AFTER variable that we currently set at a value of 30000 µseconds. When1089

the alarm setting time is less than this value, the overheads of bytecode interpretation and1090

garbage collection coupled with setting an alarm and receiving an interrupt might become1091

too expensive. So when the thread wake-up time is less than SET_ALARM_AFTER time-units1092

away, we straightaway move the thread to the readyQ to begin its execution.1093

A notable aspect of Algorithm 6 is the usage of the Tlocal clock to set the wakeup time1094

(Twakeup). This avoids the jitter introduced by executing other operations. When the wall-1095

clock time moves to Twakeup timeunit, a timer interrupt arrives and we handle that via the1096

low-level bridge (Section 6.6). The interpreter checks after executing each bytecode if there1097

are any new timer interrupt messages present in the low-level bridge. For all such messages1098

SenseVM uses the handleTimerMsg function.1099

Algorithm 7 describes the handleTimerMsg function. This algorithm primarily involves1100

updating the Tlocal clock of the thread for which the interrupt arrives. However, we apply an1101

optimisation, where a check is made to see if the next thread (timedThread2) in the waitQ1102

has a baseline that is near execution. If that is the case, the next thread (timedThread2) is1103

also scheduled for execution and all the concerned Tlocal clocks are adjusted.1104

Additionally, before scheduling the thread, timedThread, we check if the deadline of the1105

currently running thread is approaching sooner than the deadline for timedThread. In such1106
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Algorithm 5 The syncNow function

Data: A base-event value - event

if ¬hardware(event) then
if event.baseEventType == SEND then

threadIdR ← dequeue(event.channelNo.recvq);
recvEvt ← threadIdR.envRegister ;
event.Message → threadIdR.envRegister ;
threadIdR.programCounter → recvEvt.wrapFunc ;
currentThread.programCounter → event.wrapFunc;
sendingThread = currentThread;
currentThread = threadIdR;
readyQ.enqueue(sendingThread);

else if event.baseEventType == RECV then
threadIdS ← dequeue(event.channelNo.sendq);
sendEvt ← threadIdS.envRegister ;
sendEvent.Message → currentThread.envRegister ;
threadIdS.programCounter → sendEvt.wrapFunc ;
currentThread.programCounter → event.wrapFunc;
readyQ.enqueue(threadIdS);

else Do nothing; /* Impossible case */
else if hardware(event) then

if event.baseEventType == SEND then
l lBridge.write(event.Message) → driver ;

else if event.baseEventType == RECV then
currentThread.envRegister ← l lBridge.read(driver) ;

else Do nothing; /* Impossible case */
currentThread.programCounter → event.wrapFunc;

else Do nothing; /* Impossible case */

a case we enqueue timedThread in the readyQ as we want to run the program with the1107

earliest deadline first.1108

In the next section, we will briefly discuss the SenseVM scheduler.1109

6.5 The scheduler1110

SenseVM’s scheduler is a hyrbid of cooperative and preemptive scheduling. When program-1111

ming applications that do not use syncT the scheduler is cooperative in nature. Initially the1112

threads are scheduled in the order that the main method calls them. For eg:1113

1114
1 main =1115

2 let _ = spawn thread1 in1116

3 let _ = spawn thread2 in1117

4 let _ = spawn thread3 in1118

5 ...11191120

The above would schedule the threads in the order of thread1, followed by thread2 and1121

finally thread3. As the program proceeds, the scheduler relies on the threads to yield control1122

back to the scheduler so that it can run the next thread. The synchronisation algorithm1123

(Algorithm 1) shows when the scheduler is unable to find a matching thread for the currently1124
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Algorithm 6 The time function

Data: Relative Baseline = baseline, Relative Deadline = deadline

Twakeup = currentThread.Tlocal + baseline;
if deadline == 0 then

Tfinish = Integer.MAX;
else

Tfinish = Twakeup + deadline;
end
currentThread.deadline = Tfinish;
baselineabsolute = Tabsolute + baseline;
deadlineabsolute = Tabsolute + baseline + deadline;
cond1 = Tabsolute > deadlineabsolute;
cond2 = (Tabsolute ≥ baselineabsolute)&&(Tabsolute ≤ deadlineabsolute);
cond3 = baseline < SET_ALARM_AFTER;
if baseline == 0 ∨ cond1 ∨ cond2 ∨ cond3 then

readyQueue.enqueue(currentThread);
dispatchNewThread();

end
setAlarm(Twakeup);
waitQ.enqueue(currentThread).orderBy(Twakeup);
dispatchNewThread();

running thread that is ready to synchronise the communication, it blocks the current thread1125

and calls the dispatchNewThread() function to run other threads. On the other hand, when1126

synchronisation succeeds, the scheduler puts the message-sending thread to the readyQ and1127

the message-receiving thread starts running.1128

The preemptive behaviour of the scheduler occurs when using syncT. For instance, when1129

a particular untimed thread is running and the baseline time of a timed thread has arrived,1130

the scheduler then preempts the execution of the untimed thread and starts running the1131

timed thread. A similar policy is also observed when the executing thread’s deadline is later1132

than a more urgent thread, the thread with the earliest deadline is chosen to be run at that1133

instance. Algorithm 7 shows the preemptive components of the scheduler.1134

The SenseVM scheduler also handles hardware driver interactions via message-passing.1135

The structure that is used for messaging is shown below:1136

Listing 14 A SenseVM hardware message
1137

1 typedef struct {1138

2 uint32_t sender_id ;1139

3 uint32_t msg_type ;1140

4 uint32_t data;1141

5 Time timestamp ;1142

6 } svm_msg_t ;11431144

The svm_msg_t type contains a unique sender id for each driver that is the same as the1145

number used in spawnExternal to identify that driver. The 32 bit msg_type field can be1146

used to specify different meanings for the next field, the data. The data is a 32 bit word.1147

The timestamp field of a message struct is a 64 bit entity, explained in detail in Section 6.7.1148

When the SenseVM scheduler has all threads blocked, it uses a function pointer called1149

blockMsg, which is passed to it by the OS that starts the scheduler, to wait for any interrupts1150

from the underlying OS (more details in Section 6.6). Upon receiving an interrupt, the1151
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Algorithm 7 The handleTimerMsg function

Data: Wakeup Interrupt
timedThread← dequeue(waitQ);
Tnow = timedThread.baseline;
timedThread.Tlocal = Tnow;
if waitQ ̸= ∅ then

timedThread2 ← peek(waitQ); /* Does not dequeue */
cond1 = Tabsolute > timedThread2.deadline;
cond2 = (Tabsolute ≥ timedThread2.baseline)&&(Tabsolute ≤
timedThread2.deadline);

cond3 = (Tabsolute − timedThread2.baseline) < SET_ALARM_AFTER;
if cond1 ∨ cond2 ∨ cond3 then

timedThread2 ← dequeue(waitQ); /* Actually dequeue the thread */
readyQ.enqueue(timedThread2);
Tnow = timedThread2.baseline;
timedThread.Tlocal = Tnow;
timedThread2.Tlocal = Tnow;

else
setAlarm(timedThread2.baseline);

end
end
if currentThread == ∅ then

currentThread = timedThread;
currentThread.deadline = timedThread.deadline;

else
if timedThread.deadline < currentThread.deadline then // earlier deadline

currentThread.baseline = Tnow;
readyQ.enqueue(currentThread);
currentThread = timedThread;
currentThread.deadline = timedThread.deadline;

else
readyQ.enqueue(timedThread);
currentThread.logicalT ime = Tnow; /* Avoids too much time drift */

end
end
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scheduler uses the SenseVM runtime’s handleMsg function to handle the corresponding1152

message. The function internally takes the message and unblocks the thread for which the1153

message was sent. We show the general structure of SenseVM’s scheduler in Algorithm 8.1154

Algorithm 8 The SenseVM scheduler

Data: blockMsg function pointer
∀threads set Tlocal = Tabsolute;
svm_msg_t msg;
while True do

if all threads blocked then
blockMsg(&msg); /* Relinquish control to OS */
handleMsg(msg);

else
interpret(currentThread.PC);

end
end

Notable above is the initialisation of the Tlocal clock for each thread at the beginning of the1155

scheduler. Also notable is the blockMsg function that relinquishes control to the underlying1156

OS, allowing it to save power. When the interrupt arrives, the handleMsg function unblocks1157

certain thread(s) so that when the if..then clause ends, in the following iteration the else1158

clause is executed and bytecode interpretation continues. We next discuss the low-level1159

bridge connecting SenseVM to the underlying OS.1160

6.6 The Low-Level Bridge1161

The low-level bridge specifies a set of two interfaces that should be implemented when writing1162

peripheral drivers to use with SenseVM. The first interface contains functions for reading1163

and writing data synchronously to and from a driver. The other interface is geared towards1164

interrupt-based drivers that asynchronously produce data.1165

The C-struct below contains the interface functions for reading and writing data to a1166

driver as well as functions for checking of the availability of data.1167

1 typedef struct ll_driver_s {
2 void * driver_info ;
3 bool is_synchronous ;
4 uint32_t (* ll_read_fun )( struct ll_driver_s *this , uint8_t *, uint32_t );
5 uint32_t (* ll_write_fun )( struct ll_driver_s *this , uint8_t *, uint32_t );
6 uint32_t (* ll_data_readable_fun )( struct ll_driver_s * this);
7 uint32_t (* ll_data_writeable_fun )( struct ll_driver_s * this);
8

9 UUID channel_id ;
10 } ll_driver_t ;

1168

The driver_info field in the ll_driver_t struct can be used by a driver that implements1169

the interface to keep a pointer to lower-level driver specific data. For interrupt-based1170

drivers, this data will contain, among other things, an OS interoperation struct. These1171

OS interoperation structs are explained further down. A boolean indicates if the driver1172

is synchronous or not. Next the struct contains function pointers to the low-level driver’s1173

implementation of the interface. Lastly, a channel_id identifying the channel along which1174

the driver is allowed to communicate with processes running on top of SenseVM.1175

The ll_driver_t struct contains all the data associated with a drivers configuration in1176
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one place and allows for the definition of a set of platform and driver independent functions1177

to be defined for use in the runtime system, shown below:1178

1 uint32_t ll_read ( ll_driver_t *drv , uint8_t *data , uint32_t data_size );
2 uint32_t ll_write ( ll_driver_t *drv , uint8_t *data , uint32_t data_size );
3 uint32_t ll_data_readable ( ll_driver_t *drv);
4 uint32_t ll_data_writeable ( ll_driver_t *drv);

1179

The OS interoperation structs mentioned above, are essential for drivers that asynchron-1180

ously produce data and are shown below, both the Zephyr and the ChibiOS versions.1181

1 typedef struct zephyr_interop_s {
2 struct k_msgq *msgq;
3 int (* send_message )( struct zephyr_interop_s * this , svm_msg_t msg);
4 } zephyr_interop_t ;

1182

1 typedef struct chibios_interop_s {
2 memory_pool_t * msg_pool ;
3 mailbox_t *mb;
4 int (* send_message )( struct chibios_interop_s * this , svm_msg_t msg);
5 } chibios_interop_t ;

1183

In both cases, the struct contains the data that functions need to set up low-level message-1184

passing between the driver and the OS thread running the SenseVM runtime system. Zephyr1185

provides a message-queue abstraction that can take fixed-size messages, while ChibiOS1186

supports a mailbox abstraction that receives messages that are the size of a pointer. Since1187

ChibiOS mailboxes cannot receive data that is larger than a 32-bit word, a memory pool of1188

messages is employed in that case. The structure used to send messages from the drivers is1189

the already introduced svm_msg_t struct, described in Listing 14.1190

Another important class of interrupts that the scheduler needs to handle are alarms from1191

the wall-clock time subsystem, which arise from the syncT operation. The next section1192

discusses that component of SenseVM.1193

6.7 The wall-clock time subsystem1194

Programs running on SenseVM that make use of the timed operations rely on there being a1195

monotonically increasing timer. The wall-clock time subsystem emulates this by implementing1196

a 64bit timer that would take almost 7000 years to overflow at 84MHz frequency or about1197

36000 years at 16MHz. The timer frequency of 16MHz is used on the NRF52 board, while1198

the timer runs at 84MHz on the STM32.1199

SenseVM requires the implementation of the following functions for each of the platforms1200

(such as ChibiOS and Zephyr) that it runs on :1201

1 bool sys_time_init (void * os_interop );
2 Time sys_time_get_current_ticks (void);
3 uint32_t sys_time_get_alarm_channels (void);
4 uint32_t sys_time_get_clock_freq (void);
5 bool sys_time_set_wake_up (Time absolute );
6 Time sys_time_get_wake_up_time (void);
7 bool sys_time_is_alarm_set (void);

1202

The timing subsystem uses the same OS interoperation structs as drivers do and thus1203

have access to a communication channel to the SenseVM scheduler. The interoperation is1204

provided to the subsystem at initialisation using sys_time_init.1205

The key functionality implemented by the timing subsystem is the ability to set an alarm1206

at an absolute 64-bit point in time. Setting an alarm is done using sys_time_set_wake_up.1207

The runtime system can also query the timing subsystem to check if an alarm is set and at1208

what specific time.1209
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The low-level implementation of the timing subsystem is highly platform dependent at1210

the moment. But on both Zephyr and ChibiOS the implementation is currently based on a1211

single 32-bit counter configured to issue interrupts at overflow, where an additional 32-bit1212

value is incremented. Alarms can only be set on the lower 32-bit counter at absolute 32-bit1213

values. Additional logic is needed to translate between the 64-bit alarms set by SenseVM1214

and the 32-bit timers of the target platforms. Each time the overflow interrupt happens, the1215

interrupt service routine checks if there is an alarm in the next 32-bit window of time and1216

in that case, enables a compare interrupt to handle that alarm. When the alarm interrupt1217

happens, a message is sent to the SenseVM scheduler in the same way as for interrupt based1218

drivers, using the message queue or mailbox from the OS interoperation structure.1219

6.8 Comparison with Asynchronous Message-Passing1220

SenseVM chooses a synchronous message-passing model in contrast with actor-based systems1221

like Erlang that support an asynchronous message-passing model with each process containing1222

a mailbox. We believe that a synchronous message-passing policy is better suited for embedded1223

systems for the following reasons:1224

1. Embedded systems are highly memory-constrained and asynchronous send semantics1225

assume the unboundedness of an actor’s mailbox, which is a poor assumption in the1226

presence of memory constraints. Bounding the size of a mailbox results that when1227

the mailbox gets filled, message-sending becomes blocking, which is already the default1228

semantics of SenseVM.1229

2. Acknowledgement is implicit in synchronous message-passing systems, in contrast to1230

explicit message acknowledgement in asynchronous systems that leads to code bloat.1231

Additionally, if a programmer forgets to remove acknowledgement messages from an1232

actor’s mailbox, it leads to memory leaks.1233

3. Actor-based embedded systems runtimes like Medusa [2] incur an extra cost of tagging1234

messages to identify which message should be routed to which actor. SenseVM’s dedicated1235

channel-per-driver API (via spawnExternal) avoids this extra cost.1236

7 Evaluation1237

7.1 Interpretive overhead measurements1238

To characterize the overhead of executing programs on top of SenseVM compared to running1239

them directly on either Zephyr or ChibiOS, we implement button-blinky directly on top of1240

these operating systems and measure the response-time differences.1241

The button-blinky program copies the state of a button onto an LED, something that1242

could be done very rapidly at a large CPU utilization cost by continuously polling the button1243

state and writing it to the LED. Instead, the Zephyr and ChibiOS implementations are1244

interrupt-based and upon receiving a button interrupt (for either button being pressed down1245

or released), send a message to a thread that is kept blocking until such messages arrive.1246

When the thread receives a message indicating a button down or up, it sets the LED to on1247

or off. This approach keeps the low-level implementation in Zephyr and ChibiOS similar to1248

SenseVM and indicates the interpretive and other overheads in SenseVM.1249

The data in charts presented here are collected using an STM32F4 microcontroller based1250

testing system connected to either the NRF52 or the STM32F4 system under test (SUT). The1251

testing system provides the stimuli, setting the GPIO (button) to either active or inactive1252

and measures the time it takes for the SUT to respond on another GPIO pin (symbolising1253
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the LED). The testing system connects to a computer displaying a GUI and generates the1254

plots used in this paper. The plots are created by placing all response times measured into1255

buckets of similar time and plots the number of samples falling in a bucket as a vertical bar.1256

Each button is labelled with the average time of the samples it contains.1257
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(a) Response time comparison between a C-code
implementation using ChibiOS against the same
program on SenseVM (running on ChibiOS). Data
obtained on the STM32F4 microcontroller.
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(b) Response time comparison between a C-code
implementation using the Zephyr OS against the
same program on SenseVM (running on Zephyr).
Data obtained on the NRF52 microcontroller.

Figure 13 Button-blinky response times comparison between C and SenseVM

Figure 13a shows the SenseVM response time in comparison to the implementation of1258

the program running on ChibiOS using its mailbox abstraction (MB). There the overhead is1259

about 3x. Figure 13b, the chart on the right shows the SenseVM response time in comparison1260

to the Zephyr message queue based implementation (MQ) and shows an overhead of 2.6x.1261

In the measurements relative to ChibiOS (Figure 13a), there are outliers both when1262

running on ChibiOS directly and when running SenseVM on top of ChibiOS. In the ChibiOS1263

(MB) data there are 6 outliers where a response takes 1.6 times longer than an average non-1264

outlier response. For SenseVM, 8 outliers take 2.1 times longer than an average non-outlier1265

SenseVM response.1266

Outliers are expected in the SenseVM data series due to the garbage collection. The1267

outliers apparent in the plain ChibiOS code has not been pinpointed. Outliers, when running1268

on SenseVM, are studied in more detail below.1269

7.2 Effects of Garbage Collection1270

This experiment measures the effects of garbage collection on response time by repeatedly1271

running the 1000 samples test for different heap-size configurations of SenseVM. A smaller1272

heap should lead to much more frequent interactions with the garbage collector and the1273

effects of the garbage collector on the response time becomes magnified.1274

As a smaller heap is used the number of outliers should increase if the outliers are due to1275

garbage collection. The following table shows the number of outliers at each size configuration1276

for the heap used, and there seems to be an indication that GC is the cause of outliers.1277

Heap size 256 512 1024 2048 4096 8192
Outliers NRF52

on Zephyr 333 142 80 48 0 7

Outliers STM32
on ChibiOs 346 156 99 67 18 9

1278

From the figures 14a and 14c, we can see that the GC involvement in the measurements1279
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can make them take roughly twice the amount of time. Note that in the chart, the plots1280

overlap and all non-outliers are overlaying each other in the single tall red bar.1281

Zooming in on the outliers shows their internal relationships and spread. See figures 14b1282

and 14d. Here it is clear that there are more outliers as the heap is made smaller and maybe1283

a vague indication that garbage collection in a small heap is cheaper than in a larger one.1284
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(a) Response time measurements at different sizes
of the heap (8192, 4096, 2048, 1024, 512 and 256
Bytes) to identify effects of garbage collection.
This data is collected on the NRF52 microcontrol-
ler running SenseVM on top of the Zephyr OS
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(b) Zooming in on the outliers when measuring
response time at different size of the heap. This
data is collected on the NRF52 microcontroller
running SenseVM on top of the Zephyr OS
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(c) Response time measurements at different sizes
of the heap to identify effects of garbage collection.
This data is collected on the STM32F4 microcon-
troller running SenseVM on top of ChibiOS
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(d) Zooming in on the outliers when measuring
response time at different size of the heap. This
data is collected on the STM32F4 microcontroller
running SenseVM on top of the ChibiOS

Figure 14 Effects of garbage collection on the response times for various heap sizes

7.3 Precision and jitter1285

This section evaluates how the timing subsystem works in relation to jitter. Jitter can1286

be defined as the deviation from true periodicity of a presumably periodic signal, often in1287

relation to a reference clock signal. We want to evaluate how our claims of syncT reducing1288

jitter pans out in practice.1289

The program below is written in a naive way to illustrate how jitter manifests in programs.1290

Figure 15b shows what the oscilloscope draws, set to persistent mode drawing while sampling1291

the signal the Raspberry Pi outputs.1292
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1 while (1) {
2

3 uint32_t state = GPIO_READ (23);
4 if (state) {
5 GPIO_CLR (23);
6 } else {
7 GPIO_SET (23);
8 }
9

10 usleep (400);
11 }

1293

The Raspberry Pi program reads the status of a GPIO pin and then inverts its state back1294

to that same pin. The program then goes to sleep using usleep for 400us. The goal frequency1295

was 1kHz and sleeping for 400us here gave a roughly 1.05kHz signal. The more expected1296

sleep time of 500us to generate a 1kHz signal lead, instead, to a much lower frequency. So,1297

the 400us value was found experimentally. Figure 15a shows the oscilloscope measurement1298

outputs of the roughly 1kHz wave.1299

The SenseVM program for a 1kHz frequency generator is shown below. Note that in this1300

case specifying a baseline of 500us, actually leads to a 1kHz wave (compared to the 400us1301

used above that together with additional delays of the system give a roughly 1kHz wave).1302

1 not : Int -> Int
2 not 1 = 0
3 not 0 = 1
4

5 ledchan : Channel Int
6 ledchan = channel ()
7

8 foo : Int -> ()
9 foo val =

10 let _ = syncT 500 0 (send ledchan val) in
11 foo (not val)
12

13 main =
14 let _ = spawnExternal ledchan 1 in
15 foo 1

1303

Figure 15d shows the persistent display of the 1kHz wave generated by SenseVM and1304

Figure 15c shows the oscilloscope measurement outputs.1305

8 Limitations and Future Work1306

We have already discussed some of the subsets of embedded systems applications that are1307

not currently addressable by SenseVM in Section 1.2. In this section, we look at the specific1308

components of SenseVM that can be improved and propose future work to improve them.1309

Memory managememt. A primary area of improvement is upgrading our stop-the-world1310

mark and sweep garbage collector and investigating real-time garbage collectors like Schism1311

[23]. Another relevant future work would be investigating static memory-management1312

schemes like regions [30] and techniques combining regions with GC [13].1313

Interpretation overhead. A possible approach to reducing our interpretation overhead1314

could be pre-compiling our bytecode to machine code (AOT compilation). Similarly,1315

dynamic optimization approaches like JITing could be an area of investigation.1316

Deadline miss API. Currently SenseVM doesn’t have an API to represent actions that1317

should happen if a task were to miss its deadline. We envision adapting the negative1318

acknowledgement API of CML to represent missed-deadline handlers for SenseVM.1319
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(a) A roughly 1kHz square wave generated using
an Raspberry Pi 3 model B+ running Linux

(b) Illustrating the amount of jitter on the square
wave generated from the Raspberry Pi by setting
the oscilloscope display in persistent mode.

(c) A 1kHz square wave generated using SenseVM
running on the STM32F4

(d) Leaving the Oscilloscope display in persistent
mode shows a much more stable picture for the
SenseVM implementation

Figure 15 Evaluations on the 1 KHz frequency generator

Priority inversions. Although TinyTimber-style dynamic priorities might reduce priority1320

inversion occurrences, they can still occur on the SenseVM. Advanced approaches like1321

priority inheritance protocols [27] need to be experimented with on the SenseVM scheduler.1322

Static analysis and error message. The programs presented in our examples, by convention,1323

take care to call the dynamic spawn function solely from the main method. We envision1324

static analysis passes that report warnings when a programmer writes too dynamic1325

programs, which could cause unrestricted memory growth. A similar line of work would1326

be improving the general state of error messages and warnings on our frontend language.1327

9 Related Work1328

Among functional languages, there exists a number of virtual machines designed for micro-1329

controllers such as OMicroB [33] supporting OCaml, Picobit [29] supporting Scheme and1330

AtomVM [4] supporting Erlang. SenseVM differs from these projects in the respect that we1331

identify certain fundamental characteristics of embedded systems and accordingly design a1332

runtime to address those demands. Our frontend language’s APIs arise from the requirements1333

enforced by the VM in contrast with general-purpose languages like Scheme.1334

The Medusa [2] language and runtime is the inspiration behind SenseVM’s uniform1335

framework of concurrency and I/O. Medusa, however, does not provide any timing based1336

APIs, and their message-passing framework is based on the actor model. We have already1337
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compared the actor model’s design choices with ours in Section 6.81338

There exist virtual machines like the VeloxVM [32] that enable specifying security policies1339

for safe execution of programs. The security of embedded systems remains a prospective1340

research area where we envision using information-flow control policies to monitor the1341

messages passed between various processes, drawing inspiration from OSes like HiStar [37].1342

In the real-time space, a safety-critical VM that can provide hard real-time guarantees1343

on Real-Time Java programs is the FijiVM [24] implementation. A critical innovation of1344

the project was the Schism real-time garbage collector [23] from which we hope to draw1345

inspiration for future work on memory management.1346

RTMLton [28] is another example of a real-time project supporting a general-purpose1347

language like SML. RTMLton adapts the MLton runtime [35] with ideas from FijiVM to enable1348

handling real-time constraints in SML. CML is available as an SML library, so RTMLton1349

provides access to the event framework of CML but lacks the uniform concurrency-I/O model1350

and the syncT operator of SenseVM.1351

The Timber language [5] is another functional/object-oriented language that inspired1352

the syncT API of SenseVM. The TinyTimber kernel that we have discussed so far is the1353

runtime of the Timber language. Timber was designed for hard real-time scenarios and1354

their theoretical work on estimating the heap space bounds for real-time programs [17] is a1355

prospective area of future research.1356

The WebAssembly project (WASM) has spawned sub-projects like WebAssembly Micro1357

Runtime (WAMR) [1] that allows running languages that compile to WASM to run on1358

microcontrollers. Notable here is that while several general-purpose languages like JavaScript1359

can execute on ARM architectures by compiling to WebAssembly, they lack the native1360

support for the concurrent, I/O-bound and timing-aware programs that is naturally provided1361

by SenseVM. As such reactive extensions of Javascript, like HipHop.js [3], are being envisioned1362

to be used for embedded systems.1363

Another related line of work is embedding domain-specific languages like Ivory [9] and1364

Copilot [22] in Haskell to generate C programs that can run on embedded devices. This1365

approach differs from ours in that two separate languages dictate the programming model1366

when using an EDSL, the first being the DSL itself and the second being the host language1367

(Haskell). We assess that having a single language (like on SenseVM) provides a more uniform1368

programming model to the programmer but on the other hand, EDSLs have very little1369

runtime overheads, and when properly optimised, can run as fast as C.1370

10 Conclusion1371

In this paper, we have presented SenseVM, a virtual machine targeted towards embedded1372

systems programming. We identified three essential characteristics of embedded applications,1373

namely being concurrent, I/O-bound and timing-aware, and correspondingly designed our1374

VM to address all three concerns. Our evaluations, conducted on the STM32 and NRF521375

microcontrollers, suggest that SenseVM’s response time is within the range of 2-3x times1376

that of native C programs, which is an encouraging result and allows us to envision research1377

avenues to further improve our numbers through smarter garbage collection strategies1378

and AOT compilation optimisations. We also demonstrated the ease of expressing state1379

machines, common in embedded systems, through our examples. Finally, our timing API was1380

demonstrated by expressing a soft real-time application, and we expect further theoretical1381

investigations on the worst-case execution time and schedulability analysis on SenseVM.1382
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