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Abstract
Trusted Execution Environments (TEEs) are hardware en-

forced memory isolation units, emerging as a pivotal security

solution for security-critical applications. TEEs, like Intel

SGX and ARM TrustZone, allow the isolation of confidential

code and data within an untrusted host environment, such as

the cloud and IoT. Despite strong security guarantees, TEE

adoption has been hindered by an awkward programming

model. This model requires manual application partitioning

and the use of error-prone, memory-unsafe, and potentially

information-leaking low-level C/C++ libraries.

We address the above with HasTEE, a domain-specific lan-

guage (DSL) embedded in Haskell for programming TEE

applications. HasTEE includes a port of the GHC runtime

for the Intel-SGX TEE. HasTEE uses Haskell’s type system

to automatically partition an application and to enforce In-
formation Flow Control on confidential data. The DSL, being

embedded in Haskell, allows for the usage of higher-order

functions, monads, and a restricted set of I/O operations to

write any standard Haskell application. Contrary to previous

work, HasTEE is lightweight, simple, and is provided as a

simple security library; thus avoiding any GHCmodifications.

We show the applicability of HasTEE by implementing case

studies on federated learning, an encrypted password wallet,

and a differentially-private data clean room.

CCS Concepts: • Security and privacy→ Trusted com-
puting; Information flow control; Security in hardware;
• Software and its engineering→ Functional languages;
Domain specific languages.
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1 Introduction
Trusted Execution Environments (TEEs) are an emerging

design of hardware-enforced memory isolation units that aid

in the construction of security-sensitive applications [Mulli-

gan et al. 2021; Schneider et al. 2022]. TEEs have been used

to enforce a strong notion of trust in areas such as confi-

dential (cloud-)computing [Baumann et al. 2015; Zegzhda

et al. 2017], IoT [Lesjak et al. 2015] and Blockchain [Bao et al.

2020]. Intel and ARM each have their own TEE implementa-

tions known as Intel SGX [Intel 2015] and ARM TrustZone

[ARM 2004], respectively. Principally, TEEs provide a disjoint
region of code and data memory that allows for the physical

isolation of a program’s execution and state from the under-

lying operating system, hypervisor, and I/O peripherals. For

terminology, we shall use the term enclave (adopted from

Intel) to refer to the isolated region of code and data and its

trusted computing base (TCB).

TEEs, despite their strong security guarantees, have seen

limited adoption in software development owing to several

challenges. Firstly, TEEs often present an awkward and low-
level programmingmodel [Decentriq 2022]. For instance, Intel
provides a C/C++ interface to program SGX that requires

partitioning the program’s state into trusted and untrusted

components and dividing the entire logic into two separate

software projects (Section 2)—a complex and error-prone

process that could lead to data leakage. From a security per-

spective, the use of C/C++ APIs can open further opportu-

nities to exploit well-known memory-unsafe vulnerabilities

such as return-oriented programming (ROP) [Shacham 2007]
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in applications running inside TEEs [Muñoz et al. 2023]. Sec-

ondly, current TEE programming models are insufficient to
enforce security policies. Applications should be written in a

way such that they do not accidentally reveal confidential

information. Furthermore, inputs and outputs to an enclave

must be correctly encrypted, signed, decrypted, and verified

to protect against malicious hosts. Thirdly, little support is
given to migrate legacy applications inside enclaves. Appli-
cations inside enclaves often rely on their own Operating

System (OS) since they cannot trust the one in the host ma-

chine. Library OS-based approaches exist to provide this

functionality. However, for legacy applications written in

high-level languages relying on non-trivial runtimes, the

porting of the runtime becomes a challenging task.

Efforts have been made to address these challenges. The

work by Ghosn et al. [2019] introduces GoTEE, a modifi-

cation of the Go programming language with support for

secure routines that are executed inside enclaves. In GoTEE,

the authors heavily modify the Go compiler and extend the

language to support new TEE-specific abstractions that helps

to automatically partition an application. GoTEE does not

provide any control over how sensitive information moves

within the application, which could enable accidental data

leaks. In a similar spirit, Oak et al. [2021] introduce 𝐽𝐸 , a

subset of Java with support for enclaves. 𝐽𝐸 focuses on pro-

viding information-flow control (IFC) to ensure that the

code does not leak sensitive data by accident or by coer-

cion of a malicious host. 𝐽𝐸 uses a sophisticated compilation

pipeline to first partition the application and then uses an-

other compiler to check that sensitive information is not

leaked. Virtualization-based solutions, such as AMD SEV

[AMD 2018], attempt to alleviate the effort required to port

legacy applications. However, the trade-off is that the TCB

becomes larger and the granularity to identify sensitive data

becomes much coarser.

Our contribution through this paper is HasTEE, a domain-

specific language (DSL) embedded in Haskell for program-

ming TEE applications. HasTEE integrates TEE-specific ab-

straction and semantics while hiding low-level hardware

intricacies making it hardware neutral! Additionally, Has-

TEE offers IFC to prevent accidental leakage of sensitive

data. Owing to its embedding in Haskell, developers can use

familiar abstractions such as high-order functions, monads,

and a limited set of I/O operations to write applications in a

conventional manner. This design choice enables seamless

integration with all of the existing Haskell features. Com-

pared to the previous work, HasTEE is lightweight, simple,

and is provided as a simple security library; thus avoiding
any GHC [Jones et al. 1993] compiler modifications!

HasTEE by Example
Listing 1 presents a sample password checker application

written using HasTEE.

1pwdChkr :: Enclave String -> String -> Enclave Bool

2pwdChkr pwd guess = fmap (== guess) pwd

3

4passwordChecker :: App Done

5passwordChecker = do

6 passwd <- inEnclaveConstant "secret"

7 efunc <- inEnclave $ pwdChkr passwd

8 runClient $ do -- Client code

9 liftIO $ putStrLn "Enter your password"

10 userInput <- liftIO getLine

11 res <- gateway (efunc <@> userInput)

12 liftIO $ putStrLn ("Login returned " ++ show res)

Listing 1. A password checker written in HasTEE

The distinction between the trusted and untrusted parts of

the application is done via the type system that encodes

the former as the Enclave type (line 1) and the latter as the

Client type (type inferred in line 8).

The function pwdChkr takes a sensitive string located in

the enclave (Enclave String), a public string from the client

host (String) and produces a sensitive Boolean in the en-

clave (Enclave Bool). Line 6 holds the secret string that

we want to protect (inEnclaveConstant). Line 7 uses the
inEnclave call to obtain a reference to the function pwdChkr
located in the enclave. The function gateway (line 11) is re-
sponsible for transmitting the collected arguments to the

enclave function, and bringing the result back to the client.

The gateway function acts as an interface between the en-

clave and non-enclave environment. The untrusted host client
is in charge of driving the application, while the enclave is
assigned the role of a computational and/or storage resource

that services the client’s requests. HasTEE connects an appli-

cation (passwordChecker) to Haskell’s main method using

the runApp :: App a -> IO a function that executes

the application. From an IFC perspective, lines 6 and 7 cor-

respond to labelling, i.e., establishing, which inputs are sen-

sitive for the program—an activity that is part of the TCB.

In general, HasTEE code starts by labelling the sensitive in-

put with the inEnclave primitive. Subsequently, the client

code is compelled to manipulate secrets in a secure manner.

In this setting, secure means that no sensitive information

in the enclave gets leaked except that it has been obtained

via the primitive gateway. The HasTEE API is explained in

Section 4.2, and the semantics are discussed in Section 4.3.

Contributions
A type-safe, secure, high-level programming model.

The HasTEE library enables developers to program a TEE

environment, such as Intel SGX, using Haskell - a type-safe,

memory-managed language whose expressive type system

can be leveraged to enforce various security constraints. Ad-

ditionally, HasTEE allows programming in a familiar client-

server style programming model (Section 4.2 and 5.2), an

improvement over the low-level Intel SGX APIs.
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Automatic Partitioning. A key part of programming

TEEs, partitioning the trusted and untrusted parts of the

program is done automatically using the type system (details

in Section 3 and 4.3). Crucially, our approach does not require

any modification of the GHC compiler and can be adapted

to other programming languages, as long as their runtime

can run on the desired TEE infrastructure.

Information Flow Control. Drawing inspiration from

restricted IO monad families in Haskell, we designed an En-

clave monad that prevents accidental leaks of secret data by

TEE programmers (Section 5.3). Hence, our Enclave monad

enables writing applications with a relatively low level of

trust placed on the enclave programmer.

Portability of Haskell’s runtime. We modify the GHC

runtime, without modifying the compiler, to run on SGX en-

claves. This enables us to host the complete Haskell language,

including extensions, supported by GHC 8.8 (Section 5.1).

Demonstration of expressiveness. We illustrate the prac-

ticality of the HasTEE through three case studies across

different domains: (1) a Federated Learning example (Sec-

tion 6.1), (2) an encrypted password wallet (Section 6.2) and

(3) a differentially-private data clean room (Section 6.3). The

examples also demonstrate the simplicity of TEE develop-

ment enabled by HasTEE.

2 Background
Intel Software Guard Extensions (SGX)
Intel Software Guard Extensions (SGX) [Intel 2015] is a set

of security-related instructions supported since Intel’s sixth-

generation Skylake processor, which can enhance the secu-

rity of applications by providing a secure enclave for pro-
cessing sensitive data. The enclave is a disjoint portion of

memory separate from the DRAM, where sensitive data and

code reside, beyond the influence of an untrusted operating

system and other low-level software.

Intel offers an SGX SDK for programming enclaves. The

SDK requires dividing the application into trusted and un-

trusted parts, where sensitive data resides in the trusted

project. It provides specialized function calls called ecall for
enclave access and an ocall API for communication with the

untrusted client. The boundary between the client and en-

clave is defined using an Enclave Description Language (EDL).
The SDK utilizes a tool called edger8r to parse EDL files and

generate two bridge files. These files ensure secure data trans-
fer between projects through copying instead of sharing via

pointers, preventing potential manipulation of the enclave’s

state. Fig 1 shows the SDK’s programming model.

Application developers working with enclaves aim to min-

imize the Trusted Computing Base (TCB) by keeping the

operating system and system software outside the enclave.

The SGX SDK offers a restricted C standard library implemen-

tation (tlibc) for essential system software. Programming

Figure 1. Intel SGX SDK Programming Model

SGX enclaves involves understanding the complex control

flow between trusted and untrusted components. Enforc-

ing SGX’s programming model on typical software projects

can be challenging, and the limited tlibc library restricts

running applications beyond those written in vanilla C/C++.

3 Key Idea: A Typed DSL for Enclaves
The Programming Model and Partitioning
HasTEE supports the automatic partitioning of programs

by utilizing a combination of the type system to identify

the enclave and a conditional compilation tactic to provide

different semantics to each component. The compilation

tactic was first used in Haste.App [Ekblad and Claessen 2014],

to partition a single program into a Client and Server type.
Fig 2 shows the partitioning procedure at a high level.

Figure 2. The HasTEE partitioning scheme

Importantly, this approach does not require any compiler

extensions or elaborate dependency analysis passes to distin-

guish between the underlying types. The codebase involved

in other complex partitioning approaches [Ghosn et al. 2019;

Oak et al. 2021] becomes part of the Trusted Computing Base

(TCB), creating a larger TCB. In contrast, our approach does

not add any partitioning code to the TCB. Fig 3 shows the

partitioned software stack in the HasTEE approach.

Figure 3. The untrusted (left) and trusted (right) software
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Post-partitioning, the client-server-style programming

model is used for programming the enclave. In this model,

the client takes on the primary role of driving the program

and utilizes the enclave as a computational and/or storage re-

source. The source program, written in Haskell, benefits from

type safety, while HasTEE internally handles the message

transfer between the client and enclave memory at runtime.

Information Flow Control on Enclaves
Being aHaskell library enables HasTEE to tap into the library-

based Information FlowControl techniques inHaskell [Buiras

et al. 2015; Russo 2015; Russo et al. 2008]. The IFC literature

distinguishes between sensitive and non-sensitive computa-

tions via monads indexed with security levels [Russo et al.

2008], e.g., Sec H and Sec L, where security levels H and L
are assigned to sensitive and public information, respectively.

Public information can flow into sensitive entities but not

in the other way around. We have a similar security-level

hierarchy between the Enclave and Clientmonads, respec-

tively. Accordingly, we design the Enclave monad such that

it restricts the possible variants of I/O operations. Internally,

the Enclave monad constrains the scope of side-effecting

operations to protect the confidentiality of data within the

enclave (details in Section 5.3). Furthermore, HasTEE de-

mands to explicitly mark where information is being sent

back to the client (gateway), thus clearly indicating where to
audit and control information leakages. Due to the security-

critical nature of the Enclave monad, we include a trust
operator, which is similar to the endorse function found in

IFC literature.

Trusted GHC Runtime
One of the key challenges in allowing Haskell programs to

run on TEE platforms is to provide support for the GHC

Haskell Runtime [Marlow et al. 2009] itself. A Haskell pro-

gram relies on the runtime for essential tasks such asmemory

allocation, concurrency, I/O management, etc. The GHC run-

time heavily depends on well-known C standard libraries,

such as glibc on Linux [GNUDevs 1991] and msvcrt on

Windows [Microsoft 1994]. In contrast, the Intel SGX SDK

provides a much more restricted libc known as tlibc.
This results in the fact that several libc calls used by

the GHC runtime such as mmap, madvise, epoll, select
and 100+ other functions become unavailable. Even the core

threading library used by the GHC runtime, pthread, has
a much more restricted API on the SGX SDK. To solve this

conundrum, we have patched portions of the GHC runtime

and used functionalities from a library OS, Gramine [C. Tsai,

Porter, et al. 2017], to enable the execution of GHC-compiled

programs on the enclave.

TEE Independence
Finally, HasTEE provides an abstraction over low-level sys-

tem APIs offered by TEEs. As a result, the principles applied

in programming Intel SGX should translate to the program-

ming of other popular TEEs, such as the ARM TrustZone.

4 Design of HasTEE
4.1 Threat Model
We begin by discussing the threat model of the HasTEE

DSL. HasTEE has the very same threat model as that of Intel

SGX. In this model, only the software running inside the

enclave memory is trusted. All other application and system

software, such as the operating system, hypervisors, driver

firmware, etc., are considered compromised by an attacker.

A very similar threat model is shared by a number of other

work based on Intel SGX [Arnautov et al. 2016; Baumann

et al. 2015; Ghosn et al. 2019; Lind et al. 2017].

In this work, we enhance the application-level security

firstly by using a memory-safe language, Haskell, and sec-

ondly use the Enclavemonad to introduce information flow

control. Our implementation strategy of loading the GHC

runtime on the enclave allows us to handle Iago attacks

[Checkoway and Shacham 2013] (see Section 5.1). We trust

the underlying implementation of the SGX hardware and

software stack (such as tlibc) as provided by Intel. Known

limitations of Intel SGX such as denial-of-service attacks

and side-channel attacks [Schaik et al. 2022] are beyond the

scope of this paper.

An ideally secure development process should include au-

diting the code running on the enclave either through static

analyses or manual code reviews or both. The conciseness

of Haskell codebases should generally facilitate the auditing

process. However, the mechanisms for fail-proof audits are

beyond the scope of this paper as well.

4.2 HasTEE API
We show the core API of HasTEE in Fig 4. The functions

presented operate over three principal Haskell data types:

(1) Enclave, (2) Client, and (3) App. All three types are

instances of the Monad typeclass, which allows for the use

of do notation when programming with them. One of the

key differences in functionality provided by the Client and

Enclave monads is that Client allows for arbitrary I/O,

whereas Enclave only provides restricted I/O. More on the

latter in Section 5.3. The Appmonad sets up the infrastructure

for communication between the Client and Enclavemonad.

We show a simple secure counter written using most of the

API in Listing 2.

Listing 2 internally gets partitioned into the trusted and

untrusted components via conditional compilation. In line 3,

liftNewRef is used to create a secure reference initialised

to the value 0. Followed by that, the computation to incre-

ment this value inside the enclave is given in lines 4 - 7.

Applying inEnclave on the enclave computation (line 4)

yields the type App (Secure (Enclave Int)). The Secure
type is HasTEE’s internal representation of a closure. Line

4
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-- mutable references
liftNewRef :: a → App (Enclave (Ref a))
readRef :: Ref a → Enclave a
writeRef :: Ref a → a → Enclave ()

-- get reference to function inside enclave
inEnclave :: Securable a ⇒ a → App (Secure a)

-- runs the Client monad
runClient :: Client () → App Done

-- used for function application on the enclave
gateway :: Binary a ⇒ Secure (Enclave a) → Client a
(<@>) :: Binary a ⇒ Secure (a → b) → a → Secure b

-- call this from `main` to run the App monad
runApp :: App a → IO a

Figure 4. The core HasTEE API

1app :: App Done

2app = do

3 enclaveRef <- liftNewRef 0 :: App (Enclave (Ref Int))

4 count <- inEnclave $ do

5 r <- enclaveRef

6 v <- readRef r

7 writeRef r (v + 1) >> return v :: Enclave Int

8 runClient $ gateway count >>=

9 \v -> liftIO $ print $ "Counter's #" ++ show v

10

11main = runApp app

Listing 2. A secure counter written in HasTEE (types

annotated for clarity)

8 uses the critical gateway function to actually execute the

enclave computation within the enclave memory and get the

result back in the client memory. This resulting value, v, is
displayed to the user.

The only function from Fig. 4 not used in Listing 2 is the

<@> operator, used to collect arguments that are sent to the

enclave. For example, an enclave function, f, that accepts two
arguments, arg1 and arg2, would be executed as gateway
(f <@> arg1 <@> arg2). Parameters to secure functions

are copied to the enclave before the function is invoked,

and results are copied from the enclave to the client before

the client resumes execution. To do this copying, gateway
and <@> has a Binary constraint on the types involved. This

specifies that the values of the types involved have to be

serialisable. Listing 1 in Section 1 shows a concrete usage of

the operator. We have larger case studies in Section 6.

4.3 Operational Semantics of HasTEE
We provide big-step operational semantics of the HasTEE

DSL. Note, we illustrate the semantics using an interpreter

written in Haskell that shows the transition of the client as

well as the enclave memory as each operators gets inter-

preted. We show our expression language and the abstract

machine values to which we evaluate below:

type Name = String

data Exp = Lit Int | Var Name | Fun [Name] Exp
| App Exp [Exp] | Let Name Exp Exp | Plus Exp Exp
| InEnclave Exp | Gateway Exp | EnclaveApp Exp Exp --HasTEE

data Value = IntVal Int | Closure [Name] Exp Env
| SecureClosure Name [Value] | ArgList [Value] | Dummy
| Err ErrState -- Error conditions

The Exp language above is a slightly modified version of

lambda calculus with the restriction of allowing only fully

applied function application. This restriction is done to re-

flect the nature of the HasTEE API, which through the type

system, only permits fully saturated function applications

for functions residing in the enclave. The lambda calculus

language is then extended with the core HasTEE operators.

In the Value type, the Closure constructor, owing to

saturated function application, captures a list of variable

names and the environment. Notable in the Value type is

the SecureClosure constructor that represents a closure

residing in the enclave memory. This constructor does not

capture the body of the closure as the body could hold any

hidden state that lies protected within the enclave memory.

The SecureClosure value is used by the Gateway function
to invoke functions residing in the enclave.

The ArgList constructor supports the <@> operator that
collects enclave function arguments. Lastly, the Dummy value

is used as a placeholder for operators lacking semantics de-

pending on the client or the enclave memory. For instance,

the Gateway function has no meaning inside the Enclave
monad, it is only usable from the Client monad. The Dummy
crucially enables the conditional compilation trick in Has-

TEE by acting as a placeholder for meaningless functions in

the respective client and enclave memory.

Our evaluators will show transition relations operating on

two distinct memories that maps variable names to values -

the enclave memory and the client memory.

type ClientEnv = [(Name, Value)]
type EnclaveEnv = [(Name, Value)]

Accordingly, we define two evaluators - evalEnclave
(Fig. 5) and evalClient (Fig. 6). The complete evaluator run

in two passes. In the first pass, it runs a program and loads up

the necessary elements in the enclave memory and then in

the second pass, the loaded enclave memory is additionally

passed to the client’s evaluator.

Two helper functions, genEncVar and evalList are not
shown for concision. They generate unique variable names

and fold over a list of expressions respectively. Appendix A

contains the complete, typechecked semantics as runnable

Haskell code.

We use Listing 3 to illustrate how the enclave, as well as

the client memory, evolves as a program gets evaluated. Our

5
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1 evalEnclave :: (MonadState StateVar m)
2 ⇒ Exp → EnclaveEnv → m (Value, EnclaveEnv)
3 evalEnclave (Lit n) env = pure (IntVal n, env)
4 evalEnclave (Var x) env = pure (lookupVar x env, env)
5 evalEnclave (Fun xs e) env =
6 pure (Closure xs e env, env)
7 evalEnclave (Let name e1 e2) env = do
8 (e1', env') ← evalEnclave e1 env
9 evalEnclave e2 ((name,e1'):env')
10 evalEnclave (App f args) env = do
11 (v1, env1) ← evalEnclave f env
12 (vals, env2) ← evalList args env1 []
13 case v1 of
14 Closure xs body ev →
15 evalEnclave body ((zip xs vals) ++ ev)
16 _ → pure (Err ENotClosure, env2)
17 evalEnclave (Plus e1 e2) env = do
18 (v1, env1) ← evalEnclave e1 env
19 (v2, env2) ← evalEnclave e2 env1
20 case (v1, v2) of
21 (IntVal a1, IntVal a2) → pure (IntVal (a1 + a2), env2)
22 _ → pure (Err ENotIntLit, env2)
23 evalEnclave (InEnclave e) env = do
24 (val, env') ← evalEnclave e env
25 varname ← genEncVar
26 let env'' = (varname, val):env'
27 pure (Dummy, env'')
28 -- the following two are essentially no-ops
29 evalEnclave (Gateway e) env = evalEnclave e env
30 evalEnclave (EnclaveApp e1 e2) env = do
31 (_, env1) ← evalEnclave e1 env
32 (_, env2) ← evalEnclave e2 env1
33 pure (Dummy, env2)

Figure 5. Operational Semantics of the Enclave

1testProgram = let m = 3 in

2 let f = 𝜆 x -> x + m in

3 let y = inEnclave f in

4 gateway (y <@> 2)

Listing 3. A simple program for illustrating the operational

semantics of HasTEE

semantic evaluator operates in two passes. In the first pass,

the evalEnclave evaluator from Fig. 5 is run. Fig. 7a shows

the state of the enclave environment after the evaluator has

completed evaluating Listing 3. Notably, the variable y maps

to a value with no semantic meaning, as the evaluator is

already running in the secure memory.

In the second pass, the environment from Fig. 7a is addi-

tionally passed as a state variable to the evaluator evalClient
from Fig. 6. Note the different value mapped to the variable y
in Fig 7b. EnclaveApp is evaluated on lines 25-34 in Fig 6. It

generates the value SecureClosure "𝐸𝑛𝑐𝑉𝑎𝑟0" [Lit 2].
Notable is the evaluation of the gateway call on line 4 of

Listing 3. The semantics for this evaluation are in lines 12-24

of Fig 6. The evaluator upon finding a reference 𝐸𝑛𝑐𝑉𝑎𝑟0
with no semantics in the client memory (Fig 7b) looks up

1 evalClient :: (MonadState StateVar m)
2 ⇒ Exp → ClientEnv → m (Value, ClientEnv)
3

4 -- evalClient for Lit, Var, Fun, Let, App, Plus not
5 -- shown as they behave the same as evalEnclave above
6 evalClient (InEnclave e) env = do
7 (_, env') ← evalClient e env
8 varname ← genEncVar
9 let env'' = (varname, Dummy):env'
10 pure (SecureClosure varname [], env'')
11 evalClient (Gateway e) env = do
12 (e', env1) ← evalClient e env
13 case e' of
14 SecureClosure varname vals → do
15 enclaveEnv ← gets encState
16 let func = lookupVar varname enclaveEnv
17 case func of
18 Closure vars body encEnv → do
19 (res,enclaveEnv') ←
20 evalEnclave body ((zip vars vals) ++ encEnv)
21 pure (res, env1)
22 _ → pure (Err ENotClosure, env1)
23 _ → pure (Err ENotSecClos, env1)
24 evalClient (EnclaveApp e1 e2) env = do
25 (v1, env1) ← evalClient e1 env
26 (v2, env2) ← evalClient e2 env1
27 case v1 of
28 SecureClosure f args →
29 case v2 of
30 ArgList vals →
31 pure (SecureClosure f (args ++ vals), env2)
32 v → pure (SecureClosure f (args ++ [v]), env2)
33 v → pure (ArgList [v,v2], env2)

Figure 6. Operational Semantics of the Client

𝑚 ↦−→ 3

𝑓 ↦−→ 𝐶𝑙𝑜𝑠𝑢𝑟𝑒 [”𝑥”] (𝑥 +𝑚) [𝑚 ↦→ 3]
𝐸𝑛𝑐𝑉𝑎𝑟0 ↦−→ 𝐶𝑙𝑜𝑠𝑢𝑟𝑒 [”𝑥”] (𝑥 +𝑚) [𝑚 ↦→ 3]

𝑦 ↦−→ 𝐷𝑢𝑚𝑚𝑦

(a) Enclave Environment

𝑚 ↦−→ 3

𝑓 ↦−→ 𝐶𝑙𝑜𝑠𝑢𝑟𝑒 [”𝑥”] (𝑥 +𝑚) [𝑚 ↦→ 3]
𝐸𝑛𝑐𝑉𝑎𝑟0 ↦−→ 𝐷𝑢𝑚𝑚𝑦

𝑦 ↦−→ 𝑆𝑒𝑐𝑢𝑟𝑒𝐶𝑙𝑜𝑠𝑢𝑟𝑒 ”𝐸𝑛𝑐𝑉𝑎𝑟0” []

(b) Client Environment

Figure 7. (a) gets loaded during the first evaluator pass, and

the Client Environment remains empty. In the second pass,

(b) gets loaded while having access to the memory (a), as can

be seen in Fig 6.

𝐸𝑛𝑐𝑉𝑎𝑟0 in the enclave environment (Fig 7a) and finds a

Closure with a body. Crucially, it evaluates the Closure
by invoking the evalEnclave function on line 21 of
Fig. 6 using the enclave environment. This part models

how the SGX hardware switches to the enclave memory

when executing the secure function f rather than the client

memory. An important point is generating an identical fresh

variable name, 𝐸𝑛𝑐𝑉𝑎𝑟0, that the client uses to identify and

call the functions in the enclave memory.
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4.4 Practical security analysis
In what follows, we perform a security analysis of Has-

TEE. We start by making explicit that the only communi-

cation from the enclave back to the host client is primitive

gateway. In this regard, we have the following claim cap-

turing a (progress-insensitive [Askarov, Hunt, et al. 2008])

non-interference property. Intuitively, this property states

that (side-effectful) programs do not leak information except

via their termination behavior.

Proposition 4.1 (Non-interference). Given a HasTEE pro-
gram p :: Enclave a -> App Done, where p does not
use primitive gateway, and two enclave computations e1 ::
Enclave a and e2 :: Enclave a, then p e1 and p e2
perform the same side-effects in the host client.

This proposition states that in p the public effects on the

host client cannot depend on the content of the argument

of type Enclave a. The veracity of this proposition can be

proven from the semantics of gateway, which is the only

primitive calling evalEnclave from evalClient Fig. 6. If

non-interference does not hold in the context of developing

HasTEE, it could indicate the presence of vulnerabilities in

the system. For example, it could suggest that data is being

leaked into the host environment due to an error in the

partitioning process of the HasTEE compiler. Alternatively,

it might imply that certain side effects within the enclave are

unintentionally revealing data back to the host, contrary to

our expectations. Non-interference serves as an important

initial security condition in the development of HasTEE as

it helps identify and address numerous vulnerabilities that

may arise during the process.

When it comes to reason about programs with the primi-

tive gateway, we need to reason about IFC declassification
primitives (or intended ways to release sensitive informa-

tion) [Sabelfeld and Sands 2005] and how to avoid exploiting

it to reveal more information than intended. Gollamudi and

Chong [2016] utilizes delimited release as the security pol-

icy. This security policy extends information-flow control

beyond non-interference. It allows for explicit points of con-

trolled information release, called escape hatches, where sen-
sitive information can be sent to public channels. This policy

stipulates that information may only be released through

escape hatches and no additional information is leaked. The

function gateway is our escape hatch. If we apply delimited

release to HasTEE, then host clients can always learn what

the function gateway e returns, given that expression e
evaluates to the same value in the initial states st1, st2 ::
Enclave a given to a program p—a condition to avoid misus-

ing escape hatches to reveal more information than intended.

Our case studies (Section 6) satisfy delimited release.

Automatically enforcing delimited release or robust de-

classification [Myers, Sabelfeld, et al. 2004] imposes severe

restrictions in either the information being declassified or

how declassification primitives are used. Hence, we leave

enforcing such security policies as future work. Instead, our

DSL explicitly requires marking the points where informa-

tion is sent back to the client (i.e., gateway), making it clear

where to audit and control information leakages.

5 Implementation of HasTEE
5.1 Trusted GHC Runtime
One of the crucial challenges in implementing the HasTEE

library is enabling Haskell programs to run within an Intel

SGX enclave. All Haskell programs compiled via the Glasgow

Haskell Compiler (GHC), rely on the GHC runtime [Marlow

et al. 2009] for crucial operations such as memory allocation

and management, concurrency, I/O management, etc. As

such, it is essential to port the GHC runtime in order to run

Haskell programs on the enclave.

The GHC runtime is a complex software that is heavily

optimized for specific platforms, such as Linux and Win-

dows, to maximize its performance. For instance, on Linux,

the runtime relies on a wide variety of specialised low-level

routines from a C standard library, such as glibc [GNUDevs
1991] or musl [Felker 2005], to provide essential facilities like
memory allocation, concurrency, and more. The challenge

lies in porting the runtime due to the limited and constrained

implementation of the C standard library in the SGX SDK,

called tlibc [Intel 2018]. Specifically, tlibc does not sup-
port some of the essential APIs required by the GHC runtime,

including mmap, madvise, munmap, select, poll, a number

of pthread APIs, operations related to timers, file reading,

writing, and access control, and 100+ other functions.

Given the magnitude of engineering effort required to

port the GHC runtime, we fall back on a library OS called

Gramine [C. Tsai, Porter, et al. 2017]. Gramine internally

intercepts all libc system calls within an application binary

and maps them to a Platform Abstraction Layer (PAL) that

utilizes a smaller ABI. In Gramine’s case, this amounts to

only 40 system calls that are executed through dynamic

loading and runtime linking of a larger libc library, such

as glibc or musl. Importantly, to protect the confidentiality

and integrity of the enclave environment, Gramine uses a

concept known as shielded execution, pioneered by the Haven
system [Baumann et al. 2015], where a library is only loaded

if its hash values are checked against a measurement taken at

the time of initialisation. Shielded execution further protects

applications against Iago attacks [Checkoway and Shacham

2013] in Gramine.

However, there are additional difficulties in loading the

GHC runtime on the SGX enclave via Gramine. Owing to

Gramine’s diminished system ABI, it has a dummy or incom-

plete implementation for several important system calls that

the runtime requires. For instance, the absence of the select,
pselect, and poll functions, which are used in the GHC

IO manager, required us to modify the GHC I/O manager to

7
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Figure 8. The high-level overview of communication be-

tween the untrusted and trusted parts of the app

manually manage the polling behavior through experimen-

tal heuristics. Similarly, the critical mmap operation in GHC

uses specific flags (MAP_ANONYMOUS) that require modifica-

tion. In addition, other calls, such as madvise, getrusage,
and timer-based system calls, also require patching. We hope

to quantify these modifications’ performance in the future.

After the GHC runtime is loaded onto an enclave, com-

munication between the untrusted and trusted parts of the

application effectively occurs between two disjoint address

spaces. Communication between them can happen over any

binary interface, emulating a remote procedure call. Our

early prototype stage implementation uses an inter-process

communication (IPC) call to copy the serialised data (Fig 8).

A production implementation should communicate via the

C ABI using Haskell’s Foreign Function Interface (FFI), as

this would be significantly faster than an IPC.

The Gramine approach requires 57,000 additional lines of

code in the Trusted Computing Base (TCB) [C. Tsai, Porter,

et al. 2017]. However, this is still an improvement over tradi-

tional operating systems, like Linux, with a TCB size of 27.8

million lines of code [Larabel 2020].

5.2 HasTEE Library
The API of the HasTEE library was already shown (Fig-

ure 4) and discussed in Section 4.2. The principal data types,

Enclave and Client, have been implemented as wrappers

around the IO monad, as shown below:

1newtype Enclave a = Enclave (IO a) -- data constructor not

exported

2type Client = IO

A key distinction is that the Enclave data type does not
instantiate the MonadIO typeclass, as a result of which arbi-

trary IO actions cannot be lifted inside the Enclave monad.

This is to ensure that the enclave does not perform leaky IO

operations such as writing to the terminal. These are effect-

ful operations that may leak information, which may not be

rolled back. However, the Enclave monad does instantiate a

RestrictedIO typeclass that will be discussed in the follow-

ing section. The conditional-compilation-based partitioning

technique is achieved by having dummy implementations

of certain data types in one of the modules, while the con-

crete implementation of those types is defined in the second

module. We give an example of this using two different data

types from the API.

1-- Enclave.hs

2data Secure a = SecureDummy

3

4type Ref a = IORef a

1-- Client.hs

2data Secure a =

3 Secure CallID [ByteString]

4type Ref a = RefDummy

A notable aspect of the API is the Securable typeclass,

which constrains the inEnclave function and enables it to

label functions with any number of arguments as residents of

the enclave memory. The Securable typeclass accomplishes

this using a well-known typeclass trick in Haskell, used to

represent statically-typed variadic functions such as printf
[Augustsson and Massey 2013]. In general, Securable char-

acterises functions of the form 𝑎1 → ...→ 𝑎𝑛 → 𝐸𝑛𝑐𝑙𝑎𝑣𝑒 𝑏.

The operational semantics presented in Section 4.3 should

provide an intuition for the core implementation techniques

used in the library. The complete HasTEE project has been

open-sourced
1
. More implementation details can be found

in the Haste.App paper [Ekblad and Claessen 2014].

5.3 Information Flow Control for Enclaves
The HasTEE library, being written in Haskell, allows using

language-based Information Flow Control (IFC) techniques

available in Haskell [Russo et al. 2008]. IFC approaches in

Haskell aim to protect the confidentiality of data by encap-

sulating computations within a Sec monad. Typically, the

monad employs a lattice of labels [Denning 1976] to model

various security levels and then enforces policies on how

data can flow between the levels. For a two-label lattice,

where confidential data is marked with H and public data

with L, a security policy known as non-interference is to pre-

vent information flow from the secret to public channels

[Goguen and Meseguer 1982]. In other words, 𝐿 ⊑ 𝐿, 𝐻 ⊑ 𝐻 ,

𝐿 ⊑ 𝐻 , but 𝐻 @ 𝐿, where ⊑ indicates the flows to relation.
A similar scenario arises in HasTEE, where the Enclave

monad can be compared to a security-critical Sec H monad

that attempts to prevent information leakage to a public Sec
L channel represented by the Client monad. Enforcing the

non-interference policy in this scenario would imply that

no data can flow out of the Enclave monad to the Client,
which would make the enclave very restrictive for any real-

world use cases. As such, the IFC literature relaxes the non-

interference policy by the means of declassification [Sabelfeld
and Sands 2005], to allow controlled data leak from H to L.
In the HasTEE API, the gateway :: (Binary a) =>

Secure (Enclave a) -> (Client a) function is an escape
hatch [Hedin and Sabelfeld 2012] that allows the enclave to

leak any data to the client. We prioritise the usability of the

API and trust that the enclave programmer will make the

gateway call when they are certain they want to intention-

ally leak information to a public channel. However, there

is a hidden line of defence in the gateway function. If the

1https://github.com/Abhiroop/EnclaveIFC
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programmer wishes to send any user-defined data type to

the untrusted client, they need to provide an instance of the

Binary typeclass. Writing this typeclass instance for some

confidential data type, such as a private key, equips the confi-

dential data with the capacity to leave the enclave boundary,

which should be done in a highly controlled manner.

Besides the gateway function, the Enclavemonad has oc-

casional requirements to interact with general I/O facilities

like file reading/writing or random number generation. For

such operations, the Enclave monad would need a MonadIO
instance in Haskell to perform any I/O operations. How-

ever, as discussed in the previous section, we do not provide

the lenient MonadIO instance to the Enclave monad but in-

stead, use a RestrictedIO typeclass to limit the types of I/O

operations that an Enclave monad can do.

RestrictedIO, shown in Listing 4, is a collection of type-

classes that constrains the variants of I/O operations possi-

ble inside an Enclave monad. For instance, if a programmer,

through the usage of a malicious library, mistakenly attempts

to leak confidential data through a network call, the typeclass

would not allow this.

1type RestrictedIO m = (EntropyIO m, UnsafeFileIO m) -- other

typeclasses not shown

2

3class EntropyIO (m :: Type -> Type) where

4 type Entropy m:: Type

5 genEntropyPool :: m (Entropy m)

6

7class UnsafeFileIO (m :: Type -> Type) where

8 untrustedReadFile :: FilePath -> m (Untrusted String)

Listing 4. The Restricted IO typeclass

This approach is invasive in that it restricts how a library

(malicious or otherwise) that interacts with a HasTEE pro-

gram conducts I/O operations. For instance, we had tomodify

the HsPaillier library [L.-T. Tsai and Sarkar 2016] that used

the genEntropy function for random number generation.

Initially, the library could use the Haskell IO monad freely,

but to interact with a package written in HasTEE, it had to

be modified to use the more restricted type class constraint

(EntropyIO) for its effectful operations. This limits potential

malicious behaviour within the library. Notably, our changes

involve only five lines of code that instantiate the type class

and generalize the type signature of effectful operations.

Another aspect of IFC captured in our system is the notion

of endorsement [Hedin and Sabelfeld 2012], which is the

dual of declassification. Endorsement is concerned with the

integrity, i.e., trustworthiness, of information. In HasTEE, we

utilize endorsement to ensure that the integrity of secrets is

not compromised by data being introduced into the enclave.

HasTEE allows file reading operations inside the Enclave
monad, which can potentially corrupt the enclave’s data

integrity. To control this, HasTEE provides two forms of file

reading operation - (1) untrusted file read and (2) trusted

encrypted file reads. For (1), data read from untrusted files

require manual endorsement via the trust :: Untrusted a
-> a operator (where Untrusted a is a wrapper over the data
read). This provides an additional check before untrusted

data interacts with the trusted domain.

For point (2), HasTEE relies on an Intel SGX feature known

as sealing. Every Intel SGX chip is embedded with a unique

128 bit key known as the Root Seal Key (RSK). The SGX

enclave can use this RSK to encrypt trusted data that it wishes

to persist on untrusted media. This process is known as

sealing; HasTEE provides a simple interface to seal as well

as unseal the trusted data being persisted, as shown below:

1data SecurePath = SecurePath String

2

3securefile :: FilePath -> SecurePath

4securefile fp = "/secure_location/" <> fp -- path hidden

5

6readSecure :: SecurePath -> Enclave String

7writeSecure :: SecurePath -> String -> Enclave ()

In the above, the writeSecure operation corresponds to

ciphertext declassification [Askarov, Hedin, et al. 2008], while
readSecure to an operation that applies automatic endorse-

ment if the file can be decrypted successfully by the enclave

RSK. If an attacker were to locate the secure location, the

worst possible outcome would be the deletion of the file.

However, the contents of the file cannot be read or modified

outside the enclave, so the attacker would not be able to

access the sensitive information stored within.

6 Case Studies
6.1 Federated Learning
Federated Learning is an emerging privacy-preserving ma-

chine learning [Al-Rubaie and Chang 2019] approach that

allows multiple parties to train a model without sharing the

raw training data. A typical federated learning setup involves

multiple decentralized edge devices holding local datasets,

training a model locally and then aggregating the trained

model on a cloud server. Fig. 9 shows the desired setup.

The setup in Fig. 9 above is facilitated by a combination

of TEEs and homomorphic encryption. Homomorphic En-

cryption (HE) [Gentry 2009] is a form of encryption that

enables direct computation on encrypted data, revealing the

computation result only to the decryption key owner. We

emulate the very same setup for our case study where we

have two mutually distrusting parties -

• Confidential data owner. This party wants to protect

its confidential data. A real-life example would be a hospital

containing confidential patient data.

• ML model owner. This party wants to protect their in-

tellectual property (the ML model) from the data owners as

well as the cloud provider. They encrypt their model when

sending it to the data owners and allows them to use only

homomorphic encryption for operating on the model.

9
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Figure 9.A Federated Learning setup where the data owners

are protecting their data and the ML model owner is protect-

ing their model. The training with encrypted weights can be

done using homomorphic encryption.

1data SrvSt =

2 SrvSt { publicKey :: PubKey, privateKey :: PrvKey

3 , updWts :: Vector Double, numClients :: Int

4 , wtsDict :: Map Epoch [Vector CipherText]) }

Listing 5. The Federated Learning server state

The above setup only requires the cloud server supporting

Intel SGX technology so that even mobile devices can partic-

ipate in training as a worker role. We can very conveniently

model this entire setup as three clients and a server with an

enclave in HasTEE. For illustration purposes, we will use

GHC’s threads to represent the three clients instead of three

separate data owner machines.

Listing 5 models the server’s state. Note that the weights

are kept in plaintext form. The enclave state holds both its

public and private keys. However, only the public key should

be allowed to move to the client. We enforce this by not pro-

viding an instance of the Binary typeclass for the private

key. If untrusted modules try to attack such enforcement by

adding new instances to Binary, or even providing overlap-

ping ones to override the behaviour of overloaded methods,

then Safe Haskell [Terei et al. 2012] will indicate GHC to not

compile the code. Haskell is unique in terms of having an

extension like Safe Haskell. Safe Haskell enforces sandbox-

ing for trusted code by banning extensions that introduce

loopholes and compromise type-safety or module abstraction

(often for the sake of performance). As discussed in Sec-

tion 5.3, the lack of a Binary instance for the privateKey
will prevent the enclave programmer from accidentally leak-

ing the security-critical private key.

Listing 6 shows the API exposed to the client machine.

Instead of the complex SGX_ECALL machinery, our API is

expressed in idiomatic Haskell. Calling any function f from

the record apiwith an argument arg in this API is expressed
simply as gateway ((f api) <@> arg).

1type Accuracy = Double

2type Loss = Double

3data API = API {

4 aggregateModel :: Secure (Epoch -> Vector CipherText ->

Enclave (Maybe (Vector CipherText))),

5 validateModel :: Secure (Enclave (Accuracy, Loss)),

6 getPublicKey :: Secure (Enclave PubKey),

7 reEncrypt :: Secure (CipherText -> Enclave CipherText)}

Listing 6. The Federated Learning client API

Listing 7 shows the main ML model training loop. A few

functions have been elided for brevity, but the key portions

of the client-server interaction in HasTEE should be visi-

ble. The Config type holds the state containing encrypted
weights sent from the cloud server, the learning rate, the

current epoch number and the public key. After each epoch

it updates the weights to the new aggregated value (Line

12). The value x’ is the data set that the data owners are

protecting and y is the result of the learning algorithm. The

adjustModelWithLearningRate function (body elided, line
6) takes the computed gradient (line 5) and tries to converge

on the desired result.

On line 7 the server is communicated to aggregate models

spread across different clients, with the server returning

the encrypted updated weights wt’. We use a wrapper over

gateway, called retryOnEnclave (body elided), to allow the

server to move in lock step with all the clients. Then in line 8,

the server is communicated again to collect the accuracy and

loss in the ongoing epoch number, which gets displayed in

line 9. Finally, the loop continues in line 10.

1handleSingleEpoch :: API -> CurrentEpochNum -> MaxEpochNum

-> Matrix Double -> Vector Int -> Config -> Client

Config

2handleSingleEpoch api n m x' y cfg'

3 | n == m = return cfg'

4 | otherwise = do

5 grad <- computeGradient api cfg' x' y

6 cfgNew <- adjustModelWithLearningRate api

7 (cfg' { iterN = n }) grad

8 wt' <- retryOnEnclave $ (aggregateModel api) <@> n

9 <@> (weights cfgNew)

10 (acc, loss) <- gateway (validateModel api)

11 printClient $ " Iteration no: " <> show n <>

12 " Accuracy: " <> show acc <> " Loss : " <> show loss

13 handleSingleEpoch api (n+1) m x' y

14 (cfgNew { weights = wt' })

Listing 7. The key model training loop

Listing 7 above features a complex control flow with at

least two interactions visible in the loop itself. Internally,

computeGradient and adjustModelWithLearning both talk
to the enclave, calling the reEncrypt function to remove

noise from the homomorphic encryption operation. HasTEE

can represent a fairly complex, asynchronous control flow

as simple Haskell function calls.
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In terms of Information Flow Control, there are two im-

portant aspects in this case study. Firstly, the RestrictedIO
typeclass constrains potentially malicious libraries from mis-

behaving. For example, consider the library HsPaillier [L.-T.

Tsai and Sarkar 2016], which implements the Paillier Cryp-

tosystem [Paillier 1999] for partial homomorphic encryption.

All effectful operations from this library, such as genKey ::
Int -> IO (PubKey, PrvKey), need to be rewritten for

them to be usable within the Enclavemonad. The following

snippet shows our typeclass instantiation and a sample type

signature change needed inside the library.

1instance (IO ~ m) => EntropyIO m where

2 type Entropy m = EntropyPool

3 genEntropyPool = createEntropyPool

4

5-- genKey :: Int -> IO (PubKey, PrvKey) -- original type

6genKey :: (Monad m, EntropyIO m)=> Int -> m (PubKey, PrvKey)

The second aspect of IFC arises when the client machine

queries the server for accuracy and loss by asking it to vali-

date the model. On the server side, the enclave has to read

a file with test data. This test data resides outside of the

enclave and is potentially an attack vector. In order to not

inadvertently trust such an exposed source, the enclave uses

the untrustedReadFile function from the RestrictedIO
typeclass (Listing 4). The file is read as an Untrusted String
and requires explicit programmer endorsement via the trust
operator for the compiler to typecheck the program.

Overall the case study constitutes only 500 lines of code.

It naturally fits into the client-server programming model,

and the usage of Haskell provides type safety and enables

IFC-based security.

6.2 Encrypted Password Wallet
For this case study, we use HasTEE to implement a secure

password wallet that stores authentication tokens in en-

crypted form on the disk. An authentication token can be

retrieved from the wallet if the right master password is

supplied. The definition of a password wallet used by the

case study follows in Listing 8.

1-- | A single entry of authentication tokens

2data Item = Item { title :: String, username :: String,

password :: Password } deriving (Show, Read)

3-- | The secure wallet

4data Wallet = Wallet { items :: [Item], size :: Int,

masterPassword :: Password} deriving (Show, Read)

Listing 8. The definition of a password wallet as a regular

Haskell data type.

The Show and Read instances are used to convert a wallet

to and from a string. This allows us to write the wallet to

disk, and by writing to a secure file path we ensure that

the stored wallet is encrypted, as described in section 5.3.

By omitting a Binary instance we ensure that the wallet

is not inadvertently leaked to the client directly. The code

1-- | Secure file path to the wallet

2wallet :: SecureFilePath

3wallet = secureFile "wallet.seal"

4

5-- | Try to load the secure wallet into the enclave

6loadWallet :: Enclave (Maybe Wallet)

7loadWallet = do b <- doesSecureFileExist wallet

8 if b then do contents <- readSecure wallet

9 return $ readMaybe contents

10 else return Nothing

11

12-- | Store the wallet on disk in encrypted form

13saveWallet :: Wallet -> Enclave ReturnCode

14saveWallet w = writeSecure wallet (show w) >> return Success

Listing 9. The code that storing and loading the encrypted

wallet. Programmer do not need to manage encryption keys.

in Listing 9 implements the functions that store and load

the wallet. We emphasize that the code does not need to

explicitly reason about encryption and decryption, except

for defining the secure file path.

Our passwordwallet has the following features - (1) adding

an authentication token, (2) retrieving a password, (3) delet-

ing a token and (4) changing the master password. It is

designed as a command-line utility where the commands

are handled by an untrusted client and the passwords are

protected by the enclave. The complete implementation is

roughly 200 lines of Haskell code.

The hardware-enforced security provided by our secure

wallet makes it a natural fit for designing wallets that are

protected by biometrics. A similar approach is used on mod-

ern iPhones, where passwords are stored in a secure enclave

[Apple 2021] to ensure confidentiality, and the user’s biomet-

ric data is used as the master password. In our case, the usage

of a high-level language like Haskell enables expressing this

relatively complex application concisely.

6.3 Data Clean Room with Differential Privacy
A Data Clean Room (DCR) [AWS 2022] is a technology that

provides aggregated and anonymised user information to

protect user privacy while providing advertisers and ana-

lytic firms with non-personally identifiable information to

target a specific demographic with advertising campaigns

and analytics-based services.

DCRs compute and release aggregated results based on

the user data. To prevent attackers from compromising indi-

vidual user information from aggregate data (via statistical

techniques), DCRs employ differential privacy [Dwork 2006].

Differential privacy adds calibrated noise to the aggregate

data making it computationally hard for attackers to compro-

mise individual data. The noise calibration can be adjusted

for increased privacy (more noise) or increased accuracy

(less noise).
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Our third case study implements a differentially-private
DCRwithin an SGX enclave usingHasTEE. TheDCR consists

of record, User, containing fields such as name, occupation,
salary, gender, age, etc. The User record is encrypted
before being provisioned to the DCR, after which we use

the Laplace Mechanism [Dwork and Roth 2014] when per-

forming counting queries to add noise to the result. The

mechanism introduces noise by sampling a Laplace distribu-

tion. The code implementing the Laplace mechanism can be

found in Appendix B.

The DCR does not provide a Binary instance for the User
record to ensure that it is not transferred to the enclave via

plain serialisation. Instead, we expose functions that encrypt

and decrypt users.

The Laplace Mechanism for adding noise requires a source

of randomness. Here, we use Haskell’s System.Random pack-
age, which internally reads from /dev/urandom. For produc-
tion environments, a more cryptographically secure source

of randomness is required. We extend the RestrictedIO
(Section 5.3) interface to allow this operation as long as the

programmer endorses the file read.
Consider a sample query to test how many individuals in

a data set have a salary within a specific range.

1salaryWithin :: Integer -> Integer -> User -> Bool

2salaryWithin l h u = l <= salary u && salary u <= h

The HasTEE code for the DCR executing this query is

shown in Listing 10. Lines 3 to 8 specify the API of the data

clean room. The DCR’s API supports (1) initialisation, (2)

fetching of the public key, (3) provisioning user data to the

enclave, and (4) executing the salary query. Line 8 is used

to generate some arbitrary users (for testing), after which

the client code takes over. The client initializes the DCR and

fetches its public key. After this, the users are encrypted and

sent to the DCR. On line 15 the salary query is executed in

the DCR, and then the result is printed.

Generating arbitrary users to test the setup is done purely

for illustration purposes. In a more faithful implementation,

the client would relay the public key to data owners that

would then send already encrypted user records to the client,

which provisions them to the DCR. Owing to HasTEE’s

client-server programming model and the use of a high-

level language like Haskell, the implementation becomes

very compact with roughly 200 LOC.

7 Evaluations
7.1 Discussion
In contrast to development on the Intel C/C++ SGX SDK, Has-

TEE’s high-level programmingmodel entirely abstracts away

the complexity of dealing with the low-level edl files in the

SGX SDK. The remote procedure calls that happen between

the untrusted client and trusted enclave are typechecked in

Haskell, unlike the SGX SDK. The benefits of high-level of

abstraction can also be seen in the password wallet example,

1app :: App Done

2app = do

3 ref <- liftNewRef undefined

4 initSt <- inEnclave $ initEnclave ref 0.1

5 pkey <- inEnclave $ getPublicKey ref

6 prov' <- inEnclave $ provisionUserEnclave ref

7 lm <- inEnclave $ laplaceMechanism ref $

8 salaryWithin 10000 50000

9 dataset <- liftIO $ sequence $ replicate 500

10 (generate arbitrary)

11 runClient $ do

12 gateway $ initSt -- initialize enclave state

13 key <- gateway pkey -- enclaves public key

14 mapM_ (\u -> do ct <- encryptUser u key

15 gateway $ prov' <@> ct) dataset

16 -- provision users

17 result <- gateway lm -- run the salary query

18 liftIO $ putStrLn $ concat ["res: ", show result]

Listing 10. The client running the salaryWithin query over

the data set in the data clean room.

where functions readSecure and writeSecure (Listing 9)

relieves developers from the burden of key management.

Furthermore, HasTEE warns a program against accidental

data leaks and can enforce stronger compile-time guarantees

than Intel C/C++ SGX SDK. For instance, in all three case

studies, the lack of the Binary type-class constraint would,
by construction, prevent accidental leakage of the secret data

from the enclave. All three case studies restrict the I/O op-

erations possible in the Enclave monad by the type-class

RestrictedIO. Notably, in the federated learning example,

we adapted the homomorphic encryption library to limit the

effects possible in the IO monad.

7.2 Performance Evaluations
Our evaluations were conducted on an Azure Standard DC1s

v2 (1 vcpu, 4 GiB memory) SGX machine. We use the pass-

word wallet case study as the canonical example to present

performance evaluations across different parameters. We

chose this example as it covers all the major aspects of the

HasTEE API, such as protecting the confidentiality of data

across the memory as well as the disk.

Memory Overhead. We show the memory consump-

tion of our modified GHC runtime, sampled across 100 runs,

where a sample was collected every second.

Memory RSS Virtual Size Disk Swap

At rest 19,132 KB 287,920 KB 0 KB

Peak 20,796 KB 290,032KB 0 KB

Although the memory usage of HasTEEwill certainly vary

across applications, these numbers provide a general esti-

mate of the trusted GHC runtime’s space usage. The Resident

Set Size (RSS) indicates that the application fits within 20

MB at peak usage. RSS is an overestimate of memory usage

12
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as it includes the memory occupied by shared libraries as

well. As a result, we can be certain that our application fits

within the Enclave Page Cache limit (Section 2) of 93 MB.

Latency. We measure the latency and throughput for an

instance of password retrieval, that includes - (i) an enclave

crossing to call the trusted runtime, (ii) standard GHC execu-

tion time, (iii) encrypted file load, (iv) file decryption, (v) file

read, and (v) a second enclave crossing to return the result.

Our measurements show that using the Linux send/recv
call for enclave crossing results in a 60 milliseconds overall
latency. As our current socket-based communication is a

proof-of-concept, it incurs a substantial overhead compared

to native SGX enclave crossings. As a baseline, we measured

the latency of an encrypted password retrieval in unmodified

GHC (file encrypted with gpg [GNU 1999]). The baseline

number comes out to be 0.6 milliseconds showing an overall

100x slowdown. Note that an average SGX ECALL operation

incurs at least a 10x slowdown via the native SDK [Ghosn

et al. 2019]. We believe switching to native ECALLs has the

potential to improve our latencies.

Throughput. In terms of throughput, HasTEE is able to

handle on average 11 requests for password retrieval per

second. Again, this number has the potential for further

improvemnt by switching to native SGX ECALLs.

We currently present coarse-grained measurements of

the various metrics but envision future work, where more

fine-grained parameters, such as the correlation between

the GC pauses across the two runtimes can be presented.

Appendix 7.3 provides a qualitative comparison of HasTEE

against GoTEE and 𝐽𝐸 .

7.3 Comparing HasTEE to GoTEE and 𝐽𝐸

Table 1 presents a comparison between HasTEE and its two

closest counterparts - GoTEE [Ghosn et al. 2019] and 𝐽𝐸 [Oak

et al. 2021]. While both GoTEE and 𝐽𝐸 had to modify the re-

spective compilers, HasTEE required no modifications to the

compiler. The specific runtime used by 𝐽𝐸 is not mentioned

in the paper [Oak et al. 2021]; however, it suggests that no

modification of the runtime was required, as it was run on

a large virtualized host - SGX-LKL [Priebe et al. 2019]. In

contrast, the runtimes for HasTEE and GoTEE required mod-

ification. GoTEE required significant modifications to the

Golang runtime system to enable communication between

the trusted and untrusted memory.

Both GoTEE and 𝐽𝐸 use sophisticated static analysis passes

and program transformations to partition a program into its

two components. In contrast, HasTEE’s conditional compilation-

based approach is much simpler, which is beneficial when

it comes to security. Having less and simpler code makes it

easier to verify for correctness. Notably, the purity of Haskell

enables the user to inspect the type of a function and infer

that it is naturally confined whenever a function is side-effect

free. Inferring the confinement of a pure function is much

more challenging in imperative languages like Java and Go.

8 Related Work
Managed programming languages.While there are im-

perative and object-oriented languages with TEE support

(e.g., Go-based [Ghosn et al. 2019], and Java-based[Oak et al.

2021; C. Tsai, Son, et al. 2020], HasTEE is (to the best of our

knowledge) the first functional language running on a TEE

environment. The Rust-SGX [Wang et al. 2019] project pro-

vides foreign-function interface (FFI) bindings to the C/C++

Intel SGX SDK. Different from HasTEE, Rust-SGX does not

aim to introduce any programming model or IFC to pro-

tect against leakage of sensitive data. Instead, Rust-SGX’s

main goal is application-level memory safety when program-

ming with the low-level SGX SDK. HasTEE provides memory

safety by the virtue of running Haskell, a memory-safe lan-

guage, on the enclaves. TrustJS [Goltzsche et al. 2017] takes a

similar FFI-based approach as Rust-SGX for programming en-

claves with JavaScript. An important project in this space is

the WebAssembly (WASM) initiative [Rossberg 2019]. There

have been WASM projects, both academic, such as Twine

[Ménétrey et al. 2021], as well as commercial, such as Enarx

[Red Hat 2019], aimed at allowing WASM runtimes to op-

erate within SGX enclaves. Our initial approach was to use

the experimental Haskell WASM backend [Tweag.io 2022] to

run Haskell on SGX enclaves. However, the aforementioned

runtimes are not supported by GHC and lack several key

features required for loading Haskell onto an enclave.

Automatic partitioning. HasTEE has a seamless pro-

gram partitioning and familiar client-server-based program-

ming model for enclaves. HasTEE’s lightweight partition-

ing approach is inspired by the Haste.App library [Ekblad

and Claessen 2014]—a library to write web applications in

Haskell and deploy parts of it into JavaScript on the web

browser. The most well-known automatic partitioning tool

for C programs on an SGX enclave is Glamdring [Lind et al.

2017]. The general idea of partitioning a single program has

been studied as multitier programming [Weisenburger et al.

2021]. Among the existing approaches to multitier program-

ming, HasTEE provides a lightweight alternative that does

not require any compiler modification or elaborate dataflow

analysis to partition the program.

Application development. There have been attempts

to virtualize entire platforms within the enclave memory

to reduce the burden of dealing with the two-project pro-

gramming model of Intel SGX. Haven [Baumann et al. 2015]

virtualizes the entire Windows operating system as well

as an entire SQL server application running on top of it.

SCONE [Arnautov et al. 2016] virtualizes a Docker container

instance within an SGX enclave. The libraryOS Gramine [C.

Tsai, Porter, et al. 2017], which is used in this work, is an

example of lightweight virtualization.

AMD’s TEE system, AMD SEV [AMD 2018], is natively a

virtualization-based approach. While it eases development,

virtualization can result in drastically increasing the size of
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Framework HasTEE GoTEE 𝐽𝐸

IFC support Standard declassification None Robust declassification

Partitioning scheme Type-based Process-based Annotation-based

Modified compiler No Yes Yes

Modified runtime system Yes Yes No

Trusted Components

GHC compiler, GHC run-

time, Gramine

GoTEE compiler, GoTEE

runtime

Java parser and partitioner,

Jif compiler, JVM, SGX-

LKL[Priebe et al. 2019]

Programming model Client-server

Synchronous Message-

Passing

Using the object-

framework provided

by Java

Table 1. Comparison of HasTEE, GoTee, and 𝐽𝐸 . We specify the core components involved in the Trusted Computing Base in

all three frameworks.

the TCB.We chose to apply a libraryOS approach for HasTEE

in order to have a TCB of 57k lines of code (Gramine). As a

future work, we can move away from Gramine and make the

GHC runtime a standalone library inside the SGX enclave.

Information Flow Control. HasTEE draws inspiration

from the work on static IFC security libraries (e.g., [Buiras

et al. 2015; Russo 2015; Russo et al. 2008]). Such approaches

relies on the purity of Haskell to detect and stop malicious

behaviour. HasTEE can support IFC in a dynamic manner

[Stefan et al. 2011] by adapting the interpretation of the

Enclave type to be a runtime monitor rather than just a

wrapper for IO, where gateway performs security checks

when sending/receiving information—an interesting direc-

tion for future work.

The work on IMP𝐸 [Visser and Smaragdakis 2016] studies

IFC non-interference for passive and active attackers on the

host client. Gollamudi, Chong, and Arden [2019] present a

calculus for reasoning about IFC for applications distributed

across several enclaves. 𝐽𝐸 [Oak et al. 2021] studies how com-

promised host clients can abuse gateway (declassification)

primitives. Their security property and enforcement is based

on the notion of robust declassification [Myers, Sabelfeld, et

al. 2004;Waye et al. 2015]. Intuitively, this policy ensures that

low-integrity data cannot influence the declassification of

secret data. HasTEE enforces a simpler IFC policy for passive

attackers—along the lines of Visser and Smaragdakis [2016]—

and defer automatic analyses of the use of gateway for future
work. Another interesting line of work is Moat [Sinha et al.

2015], which formally verifies enclave programs running on

Intel SGX such that data confidentiality is respected. It uses

IFC to enforce the policies and automated theorem proving

to verify the policy enforcement mechanism.

9 Conclusion & Future Work
This paper presents HasTEE, a domain-specific language to

write TEE programs while ensuring confidentiality of data by

construction. Unlike previous work, HasTEE provides its par-

titioning of source code and IFC as a library! For HasTEE to

work, we ported GHC’s runtime to run within SGX enclaves

by using the libraryOS Gramine. We demonstrate through

three diverse case studies how HasTEE’s IFC mechanism can

help prevent accidental data leakage while producing con-

cise code. We hope HasTEE opens future research avenues

at the intersection of TEEs and functional languages.

There are several directions for future work. The IFC

scheme we consider operates on two security levels - sensi-

tive (Enclave) and public (Client) data. A natural extension

is to enable multiple security levels [Myers and Liskov 2000;

Stefan et al. 2011] to represent the concerns of different prin-

cipals contributing data to enclaves. TEEs also provide a ver-

ifiable launch of the execution environment for the sensitive

code and data, enabling a remote entity to ensure that it was

set up correctly. Remote attestation [Knauth et al. 2018] allows
an SGX enclave to prove its identity to a challenger using

the private key embedded in the enclave. HasTEE does not

capture attestation at the programming language level since

it a property of the system components layout. Neverthe-

less, remote attestation can facilitate secure communication

between multiple enclaves, e.g., a distributed-enclave set-

ting; so it would be interesting to incorporate language-level

support for remote attestation. Finally, GHC runtime is exten-

sively optimized for performance. Obtaining a more compact

and portable runtime, e.g., by using a restricted set of libc
operations, could result in a considerably smaller TCB. A

more portable runtime would facilitate HasTEE experiments

on other TEE infrastructures such as ARM TrustZone and

RISC-V PMP [RISC-V 2017].
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A Typechecked Operational Semantics of
HasTEE in Haskell

1{-# LANGUAGE FlexibleContexts #-}

2module HasTEEOrig where

3

4import Control.Monad.State.Class

5import Control.Monad.State.Strict

6

7type Name = String

8

9data Exp = Lit Int

10 | Var Name

11 | Fun [Name] Exp

12 | App Exp [Exp]

13 | Let Name Exp Exp

14 | Plus Exp Exp

15

16 -- HasTEE operators

17 | InEnclave Exp

18 | Gateway Exp

19 | EnclaveApp Exp Exp -- (<@>)

20 deriving (Show)

21

22data Value = IntVal Int

23 | Closure [Name] Exp Env

24 -- HasTEE values

25 | SecureClosure Name [Value]

26 | ArgList [Value]

27 | Dummy

28

29 -- Error values

30 | Err ErrState

31 deriving (Show)

32

33data ErrState = ENotClosure

34 | EVarNotFound

35 | ENotSecClos

36 | ENotIntLit

37

38instance Show ErrState where

39 show ENotClosure = "Closure not found"

40 show EVarNotFound = "Variable not in environment"

41 show ENotSecClos = "Secure Closure not found"

42 show ENotIntLit = "Not an integer literal"

43

44type Env = [(Name, Value)]

45

46type ClientEnv = Env

47type EnclaveEnv = Env

48

49

50type VarName = Int

51

52

53data StateVar =

54 StateVar { varName :: Int

55 , encState :: EnclaveEnv

56 }

57

58initStateVar :: EnclaveEnv -> StateVar

59initStateVar = StateVar 0

60

61

62eval :: Exp -> Value

63eval e =

64 let newEnclaveEnv = snd $

65 evalState (evalEnclave e

initEnclaveEnv)

66 (initStateVar initEnclaveEnv)

67 in fst $ evalState (evalClient e initClientEnv) (

initStateVar newEnclaveEnv)

68 where

69 initEnclaveEnv = []

70 initClientEnv = []

71

72genEncVar :: (MonadState StateVar m) => m String

73genEncVar = do

74 n <- gets varName

75 modify $ \s -> s {varName = 1 + n}

76 pure ("EncVar" <> show n)

77

78evalList :: (MonadState StateVar m) => [Exp] -> Env -> [

Value] -> m ([Value], Env)

79evalList [] e vals = pure (reverse vals, e)

80evalList (e1:es) env xs = do

81 (v, e) <- evalEnclave e1 env

82 evalList es e (v:xs)

83

84

85evalEnclave :: (MonadState StateVar m)

86 => Exp -> EnclaveEnv -> m (Value, EnclaveEnv)

87evalEnclave (Lit n) env = pure (IntVal n, env)

88evalEnclave (Var x) env = pure (lookupVar x env, env)

89evalEnclave (Fun xs e) env =

90 pure (Closure xs e env, env)

91evalEnclave (Let name e1 e2) env = do

92 (e1', env') <- evalEnclave e1 env

93 evalEnclave e2 ((name,e1'):env')

94evalEnclave (App f args) env = do

95 (v1, env1) <- evalEnclave f env

96 (vals, env2) <- evalList args env1 []

97 case v1 of

98 Closure xs body ev ->

99 evalEnclave body ((zip xs vals) ++ ev)

100 _ -> pure (Err ENotClosure, env2)

101evalEnclave (Plus e1 e2) env = do

102 (v1, env1) <- evalEnclave e1 env

103 (v2, env2) <- evalEnclave e2 env1
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104 case (v1, v2) of

105 (IntVal a1, IntVal a2) -> pure (IntVal (a1 + a2), env2)

106 _ -> pure (Err ENotIntLit, env2)

107

108evalEnclave (InEnclave e) env = do

109 (val, env') <- evalEnclave e env

110 varname <- genEncVar

111 let env'' = (varname, val):env'

112 pure (Dummy, env'')

113-- the following two are the essentially no-ops

114evalEnclave (Gateway e) env = evalEnclave e env

115evalEnclave (EnclaveApp e1 e2) env = do

116 (_, env1) <- evalEnclave e1 env

117 (_, env2) <- evalEnclave e2 env1

118 pure (Dummy, env2)

119

120evalList2 :: (MonadState StateVar m) => [Exp] -> Env -> [

Value] -> m ([Value], Env)

121evalList2 [] e vals = pure (reverse vals, e)

122evalList2 (e1:es) env xs = do

123 (v, e) <- evalClient e1 env

124 evalList2 es e (v:xs)

125

126

127evalClient :: (MonadState StateVar m)

128 => Exp -> ClientEnv -> m (Value, ClientEnv)

129evalClient (Lit n) env = pure (IntVal n, env)

130evalClient (Var x) env = pure (lookupVar x env, env)

131evalClient (Fun xs e) env =

132 pure (Closure xs e env, env)

133evalClient (Let name e1 e2) env = do

134 (e1', env') <- evalClient e1 env

135 evalClient e2 ((name,e1'):env')

136evalClient (App f args) env = do

137 (v1, env1) <- evalClient f env

138 (v2, env2) <- evalList2 args env1 []

139 case v1 of

140 Closure xs body ev ->

141 evalClient body ((zip xs v2) ++ ev)

142 _ -> pure (Err ENotClosure, env2)

143evalClient (Plus e1 e2) env = do

144 (v1, env1) <- evalClient e1 env

145 (v2, env2) <- evalClient e2 env1

146 case (v1, v2) of

147 (IntVal a1, IntVal a2) -> pure (IntVal (a1 + a2), env2)

148 _ -> pure (Err ENotIntLit, env2)

149

150

151evalClient (InEnclave e) env = do

152 (_, env') <- evalClient e env

153 varname <- genEncVar

154 let env'' = (varname, Dummy):env'

155 pure (SecureClosure varname [], env'')

156evalClient (Gateway e) env = do

157 (e', env1) <- evalClient e env

158 case e' of

159 SecureClosure varname vals -> do

160 enclaveEnv <- gets encState

161 let func = lookupVar varname enclaveEnv

162 case func of

163 Closure vars body encEnv -> do

164 (res,enclaveEnv') <- evalEnclave body ((zip vars

vals) ++ encEnv)

165 pure (res, env1)

166 _ -> pure (Err ENotClosure, env1)

167 _ -> pure (Err ENotSecClos, env1)

168evalClient (EnclaveApp e1 e2) env = do

169 (v1, env1) <- evalClient e1 env

170 (v2, env2) <- evalClient e2 env1

171 case v1 of

172 SecureClosure f args ->

173 case v2 of

174 ArgList vals -> pure (SecureClosure f (args ++ vals)

, env2)

175 v -> pure (SecureClosure f (args ++ [v]), env2)

176 v -> pure (ArgList [v,v2], env2)

177

178

179-- gateway (f == SecureClosure f [])

180-- gateway (f <@> arg == EA f arg == SecureClosure f [arg])

181-- gateway (f <@> arg1 <@> arg2 == EA f (EA arg1 arg2) == SC

f [arg1, arg2])

182

183

184

185

186lookupVar :: String -> [(String, Value)] -> Value

187lookupVar _ [] = Err EVarNotFound

188lookupVar x ((y, v) : env) =

189 if x == y then v else lookupVar x env

Listing 11. Operational Semantics of HasTEE

B Data Clean Room Code
1-- This function runs the query over the dataset and

2-- returns the true result

3countingQuery :: Enclave (Ref CleanRoomSt) -> (User -> Bool)

-> Enclave Int

4countingQuery refst q = do

5 st <- readRef =<< refst

6 return $ length $ filter id $ map q (users st)

7

8-- Sample the laplace distribution

9laplaceDistribution :: Enclave (Ref CleanRoomSt) -> Double

-> Enclave Double

10laplaceDistribution refst b = do

11 z <- int2Double <$> getRandom refst (0,1)

12 u <- ((/) 1000 . int2Double) <$> getRandom refst

(1,1000)

13 return $ (2 * z - 1) * (b * log u)

14

15-- The laplace mechanism, assuming the server state is

16-- already given, has type

17-- (User -> Bool) -> Enclave Double

18-- In the example usage in the paper, the salaryWithin

19-- query is partially applied such that it is of type
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20-- User -> Bool

21laplaceMechanism :: Enclave (Ref CleanRoomSt) -> (User ->

Bool) -> Enclave Double

22laplaceMechanism refst q = do

23 st <- readRef =<< refst

24 -- perform the true query

25 true <- int2Double <$> countingQuery refst q

26 -- sample noise from the laplace distribution

27 noise <- laplaceDistribution refst (1 / (epsilon st))

28 -- augment the true result with the noise

29 return $ true + noise

Listing 12. Code for the laplace mechanism.
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