
HasTEE+: Confidential Cloud Computing and
Analytics with Haskell

Abhiroop Sarkar[0000−0002−8991−9472] and Alejandro Russo[0000−0002−4338−6316]

Chalmers University, Gothenburg, Sweden
{sarkara,russo}@chalmers.se

Abstract. Confidential computing is a security paradigm that enables
the protection of confidential code and data in a co-tenanted cloud de-
ployment using specialized hardware isolation units called Trusted Exe-
cution Environments (TEEs). By integrating TEEs with a Remote Attes-
tation protocol, confidential computing allows a third party to establish
the integrity of an enclave hosted within an untrusted cloud. However,
TEE solutions, such as Intel SGX and ARM TrustZone, offer low-level
C/C++-based toolchains that are susceptible to inherent memory safety
vulnerabilities and lack language constructs to monitor explicit and im-
plicit information-flow leaks. Moreover, the toolchains involve complex
multi-project hierarchies and the deployment of hand-written attestation
protocols for verifying enclave integrity.

We address the above with HasTEE+, a domain-specific language (DSL)
embedded in Haskell that enables programming TEEs in a high-level lan-
guage with strong type-safety. HasTEE+ assists in multi-tier cloud appli-
cation development by (1) introducing a tierless programming model for
expressing distributed client-server interactions as a single program, (2)
integrating a general remote-attestation architecture that removes the
necessity to write application-specific cross-cutting attestation code, and
(3) employing a dynamic information flow control mechanism to prevent
explicit as well as implicit data leaks. We demonstrate the practicality of
HasTEE+ through a case study on confidential data analytics, present-
ing a data-sharing pattern applicable to mutually distrustful participants
and providing overall performance metrics.

Keywords: Confidential Computing · Trusted Computing · Trusted Ex-
ecution Environments · Information Flow Control · Attestation · Haskell.

1 Introduction

Confidential computing [28] is an emerging security paradigm that ensures the
isolation of sensitive computations and data during processing, shielding them
from potential threats within the underlying infrastructure. It accomplishes this
by employing specialised hardware isolation units known as Trusted Execution
Environments (TEEs). A TEE unit, such as the Intel SGX [24] or ARM Trust-
Zone [1], provides a disjoint region of code and data memory that allows for

2 Abhiroop Sarkar, Alejandro Russo

the physical isolation of a program’s execution and state from the underlying
operating system, hypervisor, I/O peripherals, BIOS and other firmware.

TEEs further allow a remote party to establish trust by providing a measure-
ment of the sensitive code and data, composing a signed attestation report that
can be verified. As such, TEEs have been heralded as a leading contender to
enforce a strong notion of trust within cloud computing infrastructure[4,33,50],
particularly in regulated industries such as healthcare, law and finance [12].

However, an obstacle in the wide-scale adoption of confidential computing has
been the awkward programming model of TEEs [47]. TEEs, such as Intel SGX,
involve partitioning the state of the program into a trusted project linked with
Intel-supplied restricted C standard library [19] and an untrusted project that
communicates with the trusted project using custom data copying protocols [18].
The complexity is compounded for distributed, multi-tiered cloud applications
due to the semantic friction in adhering to various data formats and protocols
across multiple projects [32], resulting in increased developer effort [30].

Furthermore, a well-known class of security vulnerabilities [8,39] arise from
the memory-unsafety of the TEE projects. Given the security-critical nature
of TEE applications, efforts have been made to introduce Rust-based [48] and
Golang-based SDKs [13] aimed at mitigating memory unsafety vulnerabilities.
However, the same applications remain vulnerable to unintended information
leaks [34]. Consider the following trusted function hosted within a TEE:

1 #include "library.h" //provides `int computeIdx(char *)`

2 char *secret = "...";

3 int public_arr [15] =;

4 void trusted_func(char *userinput, int inputsize) {

5 if (memcmp(secret, userinput, inputsize) == 0) {

6 int val = computeIdx(userinput);

7 ocall_printf("%d\n", public_arr[val]); // handwritten printf routine

8 } else { ocall_printf("0\n"); }

9 }

In the above program, at least five attack vectors are present - (1) the
inputsize parameter can be abused to cause a buffer-overflow attack, (2) the
userinput parameter can be tampered by a malicious operating system to force
an incorrect branching, (3) even with the correct inputsize and userInput, the
attacker can observe stdout to learn which branch was taken, (4) the trusted
library function - computeIdx - could intentionally (if written by a malicious
party) or accidentally leak secret, and (5) finally the attacker can use timing-
based side channels to learn the branching information or even the secret [7].

Our contribution through this work is – HasTEE+ – a Domain Specific Lan-
guage (DSL) embedded in Haskell and targeted towards confidential comput-
ing. HasTEE+ is designed to mitigate at least four of the five attack vectors
mentioned above. Additionally, it offers a tierless programming model, thereby
simplifying the development of distributed, multi-tiered cloud applications.

HasTEE+ builds on the HasTEE [37] project, which crucially provides a
Glasgow Haskell Compiler (GHC) runtime [23] capable of running Haskell on

HasTEE+: Confidential Cloud Computing and Analytics with Haskell 3

Intel SGX machines. While using a memory-safe language like Haskell or Rust
mitigates attack vector (1), all the other attack vectors remain open in the
HasTEE project. HasTEE+ notably adds support for a general one-time-effort
remote-attestation infrastructure that helps mitigate the attack vector (2). While
the underlying protocol employs Intel’s RA-TLS [21], HasTEE+ ensures that
programmers are not required to create custom attestation code for capturing
and sending measurements or conducting integrity checks [22].

For attack vectors (3) and (4), HasTEE+ adds support for a dynamic infor-
mation flow control (IFC) mechanism based on the Labeled IO Monad (LIO)
[43]. Accordingly, we adopt a floating-label approach from OSes such as HiStar
[51], enabling HasTEE+ to relax some of the impractical I/O restrictions in the
original HasTEE project. Side-channel attacks (attack vector (5)) remain outside
the scope of HasTEE+.

Concerning the complex programming model, modern TEE incarnations like
AMD SEV-SNP [38] and Intel TDX [20] introduce a virtualization-based solu-
tion, opting to virtualize the entire project instead of partitioning it into trusted
and untrusted components. At the cost of an increased trusted code base, this
approach simplifies the TEE project layout. Nevertheless, it remains vulnerable
to the complexities of a multi-tiered cloud application, as well as all five of the
aforementioned attack vectors.

The tierless programming model of HasTEE+ expresses multi-client-server
projects as a single program and uses the Haskell type system to distinguish
individual clients. A separate monadic type, such as Client "client1" a, de-
marcates each individual client, while HasTEE’s multi-compilation tactic parti-
tions the program. This programming model, evaluated on Intel SGX, remains
applicable on newer Intel TDX machines.

Contributions. We summarize the key contributions of HasTEE+ here:

– HasTEE+ introduces a tierless DSL (Section 3.1), capable of expressing
multi-tiered confidential computing applications as a single program, increas-
ing an application’s comprehensibility and reducing developer effort.

– HasTEE+ incorporates a remote attestation design (Section 3.2) that relieves
programmers from crafting custom integrity checks and attestation setups.

– HasTEE+ integrates dynamic information flow control mechanisms (Section
3.3) to prevent explicit and implicit information leaks from applications.

– We use HasTEE+’s IFC mechanism and cryptography in a data clean room
case study (Section 4), showing a general data sharing pattern for conducting
analytics on confidential data among mutually distrustful participants.

2 Threat Model

We build upon the threat model of the HasTEE project [37] and other related
works on Intel SGX [3,4,13,48]. In such a threat model, an attacker attempts to
compromise the code and data memory within the TEE. The attacker has ad-
ministrative access to the operating system, hypervisor and other related system
software hosted on a malicious cloud service.

4 Abhiroop Sarkar, Alejandro Russo

We expand the above threat model to include an active attacker attempting
to compromise the integrity of the data flowing into the TEE, as well as a
passive attacker who observes the public channels that the trusted software
interacts with to learn more about its behaviour. The threat model terminology is
adopted from the JE project [31], and related attacks are discussed in subsequent
sections. Another class of potential threats emerge from the inclusion of public
software libraries into TEE software, such as cryptography libraries, which might
accidentally or intentionally leak secrets [25].

HasTEE+’s attestation infrastructure, based on Intel’s RA-TLS protocol [21]
accounts for masquerading attacks [15,45]. Availability attacks such as denial-
of-service and hardware side-channel attacks are outside the scope of this work.

3 The HasTEE+ DSL

We illustrate the key APIs of HasTEE+ using a password checker application in
Listing 1, and explain the individual types and functions in the subsequent sec-
tions. Notably, the entire application, consisting of a separate client and server,
can be expressed within 27 lines of Haskell code (excluding import declarations).

Listing 1 shows the user Alice storing her password in the TEE memory and
deploying the trusted function pwdChecker to conduct a password check. The
application uses three key types – EnclaveDC, Client, and App, adapted from
HasTEE [37]. All three types implements a monadic interface, denoted as m,
constructed using fundamental operations return :: a -> m a and (>>=) ::

m a -> (a -> m b) -> m b (read as bind). The return x operation produces
a computation returning the value of x without side effects, while the (>>=)

function sequences computations and their associated side effects. In Haskell, we
often use the do-notation to express such monadic computations.

The EnclaveDC monad represents the trusted computations that get loaded
onto a TEE. The name Enclave alludes to an Intel SGX enclave, while DC
stands for Disjunction Category, which we further explain in Section 3.3.

The client-side of the application is represented by the namesake Client

monad that captures a type-level string - "client". The type-level string allows
the Haskell type-system to distinguish between multiple clients and serves as an
identifier for the monadic computation runner function - runAppRA on line 27.

The monad App serves as a staging area where the enclave data ("password")
and the enclave computation (pwdChecker) are loaded into trusted memory.
Also, the client function is provided with the API it will use to communicate
with the TEE within the App monad. We provide the type signatures of a sim-
plified subset of the HasTEE+ APIs used in Listing 1 for loading trusted data
and computations, and running the computations, in Fig. 1 below.

The application begins with the app function (lines 17-25). The functions
inEnclaveLabeledConstant and inEnclave are used to load the trusted data
(line 19) and the trusted function (line 21) in the enclave, respectively. The
runClient at line 22 runs the monadic Client computations. Note, there is no

HasTEE+: Confidential Cloud Computing and Analytics with Haskell 5

1 pwdChecker :: EnclaveDC (DCLabeled String) -> String -> EnclaveDC Bool

2 pwdChecker pwd guess = do

3 l_pwd <- pwd

4 priv <- getPrivilege

5 p <- unlabelP priv l_pwd

6 if p == guess then return True else return False

7

8 data API = API { checkpwd :: Secure (String -> EnclaveDC Bool) }

9

10 client :: API -> Client "client" ()

11 client api = do

12 liftIO $ putStrLn "Enter your password:"

13 userInput <- liftIO getLine

14 res <- gatewayRA ((checkpwd api) <@> userInput)

15 liftIO $ putStrLn ("Login returned " ++ show res)

16

17 app :: App Done

18 app = do

19 pwd <- inEnclaveLabeledConstant pwdLabel "password"

20 let priv = toCNF "Alice"

21 efunc <- inEnclave (dcDefaultState priv) $ pwdChecker pwd

22 runClient (client (API efunc))

23 where

24 pwdLabel :: DCLabel

25 pwdLabel = "Alice" %% "Alice" :: DCLabel

26

27 main = runAppRA "client" app >> return ()

Listing 1: A password checker application in HasTEE+

inEnclave :: Label l => LIOState l p -> a -> App (Secure a)

inEnclaveLabeledConstant

:: Label l => l -> a -> App (EnclaveDC (DCLabeled a))

gatewayRA :: (Binary a, Label l)

=> Secure (Enclave l p a) -> Client loc a

(<@>) :: Binary a => Secure (a -> b) -> a -> Secure b

runClient :: Client loc a -> App Done

runAppRA :: Identifier -> App a -> IO a

Fig. 1. HasTEE+ APIs for loading data and computations on the TEE and invoking
the TEE (parameterized types simplified and typeclass constraints omitted for brevity).

equivalent runEnclave, as in our programming model a client functions as the
main application driver, while the enclave serves as a computational service.

The client and server communicate with each other through a user-defined
API type (line 8) that encapsulates a remote closure, represented using the

6 Abhiroop Sarkar, Alejandro Russo

Secure type constructor. This closure is constructed on line 21 with the inEnclave
function whose type signature can be found in Fig. 1. The parameter LIOState
l p and the typeclass constraint Label l are explained in Section 3.3.

The client function (lines 10-15) has access to the remote closure through
the API type. The remote function is invoked on line 14 using the <@> operator
to emulate function application and the gatewayRA function executes the remote
function call. The respective type signatures are specified in Fig. 1.

A notable type in the pwdChecker function is DCLabeled String that cap-
tures the password string but is labeled with ownership information of user Alice.
The labeling happens on line 19 using the inEnclaveLabeledConstant function
and the label pwdLabel (lines 24,25). The body of pwdChecker uses certain IFC
operations - getPrivilege and unlabelP, which we elaborate on in Section 3.3.

The structure of Listing 1 represents the standard style of writing HasTEE+

programs, where the monadic types EnclaveDC, Client and App indicate the
partitioning within the program body. We discuss the partitioning tactic and
the underlying representation to capture multiple clients in the next section.

3.1 Tierless client-server programming

HasTEE+ builds on the partitioning strategy of HasTEE [37] but generalizes
it for multiple clients. The strategy involves compiling the program n times for
n parties. The compilation of the enclave program substitutes dummy imple-
mentation for all client monads. Similarly, each client compilation substitutes a
dummy value for the enclave monad. The distinction between each client is done
using a type-level string identifier, such as "client1". At runtime, this identifier
is used to dynamically dispatch the correct client, as shown in Fig. 2.

The dynamic identifier-based dispatch of the client computation is inspired
from the HasChor library [40] for choreographic programming. In this approach,
a Client monad is parameterized with a type-level location string, which is used
at runtime to execute the desired Client computation (see Listing 2).

data Client (loc :: Symbol) a where

Client :: (KnownSymbol loc) => Proxy loc -> IO a -> Client loc a

symbolVal :: forall (n :: Symbol) proxy. KnownSymbol n => proxy n -> String

runClient :: Client loc a -> App Done

runClient (Client loc cl) = App $ do

location <- get -- the underlying App monad captures the location

if ((symbolVal loc) == location)

then liftIO cl >> return Done

else return Done -- cl not executed

Listing 2: The underlying Client monad in HasTEE+

HasTEE+: Confidential Cloud Computing and Analytics with Haskell 7

Fig. 2. HasTEE+’s partitioning uses multiple compilations to create binaries that can
dynamically dispatch the code for only one concerned monad based on a string identifier

The function symbolVal is provided by GHC to reflect types as terms at
runtime, provided the types are constrained by the KnownSymbol typeclass.
The runClient function in Listing 2 queries the App monad that captures the
string within the underlying App monad. The runClient implementation for
the EnclaveDC module is simply implemented as runClient = return Done,
which amounts to a dummy implementation. A case study involving multiple
clients is demonstrated in Section 4.

For the remote function invocation, the inEnclave function internally builds
a dispatch table mapping an integer identifier to each enclave function. The client
only gets access to the integer identifier. It uses the <@> operator to gather
the function argument and the gatewayRA function to serialise the arguments,
make the remote function call (specifying the identifier), and obtain the result
computed on the remote enclave machine. Note the Binary typeclass constraint
(Fig. 1) on both of the remote invocation functions for binary serialisation.

The complete implementation details of HasTEE+ has been made publicly
available1. Further details on the operational semantics of the general partition-
ing strategy can be found in the HasTEE[37] paper.

3.2 Remote Attestation via a Monitoring Server

A key component of confidential computing is remote attestation, which estab-
lishes trust on a TEE within a malicious environment. In HasTEE+, we conduct
our experiments on Intel SGX enclaves, and hence our infrastructure is inte-
grated with the SGX attestation protocol. The low-level protocol is a multi-step

1 https://github.com/Abhiroop/HasTEE

https://github.com/Abhiroop/HasTEE

8 Abhiroop Sarkar, Alejandro Russo

process [21] that begins with the client sending a nonce to the TEE, the TEE
then creates a manifest file that includes an ephemeral key to encrypt future
communication. Next, the TEE generates an attestation report that summarizes
the enclave and platform state. A quoting enclave on the same machine verifies
and signs the report, now called a quote, and returns it to the client. The client
then communicates with the Intel Attestation Service (IAS) to verify the quote.

The API for this interface is quite low-level and involves programming at the
level of a device driver (/dev/attestation). Intel’s RA-TLS protocol abstracts
over the low-level APIs and presents an API deeply tied to the TLS protocol. RA-
TLS operates by extending an X.509 certificate to incorporate the attestation
report within an unused X.509 extension field. During TLS connection setup,
it uses the TLS handshake to transmit the quote, calculated using the protocol
described earlier [21]. The enclave programmer, working with RA-TLS, interacts
with a modified TLS implementation such as Mbed TLS [2]. Now, the focus shifts
back to dealing with low-level socket-programming APIs, such as:

int (*ra_tls_create_key_and_crt_der_f)(uint8_t** der_key, size_t* der_key_size,

uint8_t** der_crt, size_t* der_crt_size);

void (*ra_tls_set_measurement_callback_f)(int (*f_cb)(const char* mrenclave,

const char* mrsigner, const char* isv_prod_id, const char* isv_svn));

Once again, managing these APIs is error-prone and memory unsafe. Addi-
tionally, it requires constructing underspecified protocols. Most importantly, the
programmer is burdened with handling cross-cutting concerns that are irrelevant
to the application code.

In HasTEE+, we abstract over Intel’s RA-TLS protocol. As mentioned ear-
lier, clients always serve as the primary program driver, while the enclave func-
tions as a computational service. The enclave-as-a-service model is implemented
by representing the entire enclave program as an infinitely running server. The
server is implemented in C using the Mbed TLS library [2], which can parse
and verify the modified X.509 certificate. Internally, when the enclave runs, it
spawns the C server hosted on the enclave memory but using separate memory
pages. We use GHC’s Foreign Function Interface to establish a communication
channel between the C and Haskell heaps. Listing 3 shows a high-level overview
of the implementation.

The Mbed TLS-based C server module acts as a monitor for the enclave
application. All dataflows between the clients and the enclave pass through this
module, which conducts integrity checks on incoming data at this point. Fig. 3
shows the HasTEE+ general monitoring architecture.

There are two distinct attackers targeting the dataflow - (1) a malicious OS
snooping or tampering with the data flowing into the enclave, and (2) a malicious
client, potentially colluding with the OS, repeatedly sending garbage inputs to
observe the behaviour of the enclave. The TLS channel specifically prevents the
first attack. For the second attack, we use public-key-cryptography-based digital
signatures to verify the identity of the client making the request.

For instance, in Listing 1, we provision the public key for user Alice during
enclave boot time and disallow password checks from other malicious clients.

HasTEE+: Confidential Cloud Computing and Analytics with Haskell 9

runAppRA :: Identifier -> App a -> IO a

runAppRA ident (App s) = do

(a, vTable) <- runStateT s (initAppState ident)

flagptr <- malloc :: IO (Ptr CInt)

dataptr <- mallocBytes dataPacketSize :: IO (Ptr CChar)

_ <- forkOS (startmbedTLSSERVER_ffi tid flagptr dataptr)

result <- try (loop vTable flagptr dataptr) -- exception handler

-- exception handling and freeing C pointers

return a

where

loop :: [(CallID, Method)] -> Ptr CInt -> Ptr CChar -> IO ()

loop vTable flagptr dataptr = do -- body elided

-- non-blocking loop that gets woken when data arrives;

-- `flagptr` indicates data arrival; read data from `dataptr`

-- invoke the correct method from the lookup table `vTable`

loop vTable flagptr dataptr -- continue the event loop

-- implemented in C

startmbedTLSSERVER_ffi :: ThreadId -> Ptr CInt -> Ptr CChar -> IO ()

Listing 3: High-level template of the runAppRA function for the enclave

Fig. 3. HasTEE+’s remote attestation infrastructure abstracts over Intel’s RA-TLS
protocol and supports establishing the identity of the client and the server

While Intel-SGX also offers mutual attestation services, they depend on the client
machine supporting an SGX enclave. Considering Intel’s recent deprecation of
SGX services on desktops and other client devices [47], our scheme aligns well.

3.3 Dynamic Information Flow Control

While programming TEEs using a memory-safe and type-safe language inher-
ently provides stronger guarantees than programming in C/C++, such TEE
applications remain vulnerable to unintended information leaks. To mitigate
such explicit and implicit information leaks, HasTEE+ integrates a dynamic in-
formation flow control mechanism within the underlying EnclaveDC monad. For
instance, the trusted function pwdChecker from Listing 1 operates in this monad
and captures a labeled string - the user password. The internal representation of
the types EnclaveDC a and DCLabeled a is as follows:

newtype Label l => Enclave l p a = Enclave (IORef (LIOState l p) -> IO a)

10 Abhiroop Sarkar, Alejandro Russo

data Labeled l t where

LabeledTCB :: (Label l, Binary l, Binary t) => l -> t -> Labeled l t

type EnclaveDC = Enclave DCLabel DCPriv

type DCLabeled = Labeled DCLabel

data LIOState l p = LIOState { lioCurLabel :: l, lioClearance :: l

, lioOutLabel :: l, lioPrivilege :: Priv p}

The above representation is inspired by the LIO Haskell library [43]. The
Enclave monad is parameterized by the label type l and privilege type p,
wherein the Label typeclass captures a lattice [9] with partial order ⊑ gov-
erning the allowed flows. The Enclave monad employs a floating label approach,
inspired by the HiStar OS [51]. In this approach, the computational context re-
tains a current label Lcur. Upon reading sensitive data labeled L, it taints the
context with the label Lcur⊔L, where ⊔ denotes the least upper bound. The float-
ing label approach restricts subsequent effects and enforces the lattice property,
thereby preventing information leaks from higher-classified data to lower con-
texts in the lattice—a principle known as non-interference [14]. In the LIOState
type, lioCurLabel represents Lcur, and lioClearance imposes an upper bound
on the upward flow of a computational context within the lattice.

The EnclaveDC type specialises the Enclave monad to use disjunction cat-
egory (DC) labels [42]. A DC Label captures both the confidentiality [9] and
integrity [6] as a tuple. It employs the notion of mutually distrusting principals,
whose conjunction represents restrictions on both the confidentiality and in-
tegrity of the data. An example label type is found in Listing 1, where pwdLabel
constructs a DC Label using the tuple-construction operator %% and a string
representation of the principal Alice to give "Alice" %% "Alice" (line 25).

A notable component in the DC Label system is the notion of a privilege,
which is the type parameter p in the Enclave monad. In most real-world sce-
narios, the strict enforcement of non-interference is impractical, and privileges
allow relaxing this policy by defining a more flexible ordering relation, ⊑P .

P ∧ C2 =⇒ C1 P ∧ I1 =⇒ I2
< C1, I1 > ⊑P < C2, I2 >

In HasTEE+’s DCLabel implemen-
tation, we use a conjunctive normal
form (CNF) representation for each
disjunctive category of confidentiality
and integrity. Hence, given a boolean
formula P representing the privileges
and two labels < C1, I1 > and <
C2, I2 >, the ⊑P is defined as shown
in the formula.

In Listing 1, we use the toCNF function (line 20) to generate a privilege for
Alice to declassify the password, provisioning it to the Enclave monad at boot
time (line 21). This allows the pwdChecker function to invoke getPrivilege

(line 4) and then use that privilege to call the unLabelP function (line 5), which
internally computes the ⊑P formula shown above. The unlabelP function and
a related set of core APIs for HasTEE+’s IFC enforcement is shown in Fig. 4.

HasTEE+: Confidential Cloud Computing and Analytics with Haskell 11

unlabel :: Label l => Labeled l a -> Enclave l p a

unlabelP :: PrivDesc l p => Priv p -> Labeled l a -> Enclave l p a

label :: (Label l, Binary l, Binary a)

=> l -> a -> Enclave l p (Labeled l a)

labelP :: (PrivDesc l p, Binary l, Binary a)

=> Priv p -> l -> a -> Enclave l p (Labeled l a)

taint :: Label l => l -> Enclave l p ()

taintP :: PrivDesc l p => Priv p -> l -> Enclave l p ()

Fig. 4. Core HasTEE+ APIs for Information Flow Control

Implementation note: for prototyping, we represent principals and corresponding
privileges using Strings. In practice, a 512-bit private-key-hash is recommended.

The operations shown above dynamically compute the ⊑ and ⊑P relation to
determine allowed information flows. The PrivDesc typeclass permits delegating
privileges akin to the acts for relation described in the Myers-Liskov labeling
model [29]. The type Labeled l a exists to allow labeling values to labels other
than Lcur. Labeled data can be used to indicate data ownership and hence we
provide additional APIs for the Client monad to label, serialise and unlabel

data, inspired by labeled communication in the COWL system [44].
An implementation challenge arises when integrating the dynamic IFC mech-

anism with our partitioning tactic, specifically within the inEnclave :: Label

l => LIOState l p -> a -> App (Secure a) function. This function is used
to mark a function as trusted and move it into the TEE. The polymorphic type
a encodes any general function of the form a1 -> a2 -> ... an -> Enclave l

b. However, the type-checker is unable to unify the l in LIOState l p and the
l in Enclave l b. Due to the dynamic nature of our IFC mechanism, a user can
mistakenly supply a different label type at runtime, preventing the type-checker
from producing a witness. Accordingly, we use the Data.Dynamic module of
GHC to dynamically type the LIOState l p term. Thus, before evaluating the
LIO computation, our evaluator dynamically checks for matching types and, on
success, executes the monadic computation. A notable aspect is that both the
program partitioning and IFC enforcement are implemented as a Haskell library,
which allows us to use these features of the language.

4 Case Study: A Confidential Data-Analytics Pattern

We present a case study in privacy-preserving data analytics, illustrating how
a group of mutually distrusting parties can perform analytics without revealing
their data to each other. We use the core features of HasTEE+ that we have
discussed so far - tierless programming, remote attestation and dynamic IFC
with privileges for declassification.

Fig. 5 shows the overall confidential analytics setup. The analytics is carried
out in a data clean room (DCR) - a TEE hosted on a public cloud that aggregates

12 Abhiroop Sarkar, Alejandro Russo

data from multiple parties without revealing the actual data. In Fig. 5, the no-
tation {a, b, ...} denotes the state (in-memory and persistent) of that party. The
figure shows two distinct sets of participants - the Data Providers (P) and the
Analytics Consumers (C). The setup does not limit the number of participants,
allowing m data providers and n analytics consumers, where m,n ∈ N. Addi-
tionally, there are no restrictions requiring the data providers and the analytics
consumer to be different, and hence in some cases P = C.

Fig. 5. A Data Clean Room (DCR) pattern with m data providers (P) and n analytics
consumers (C). P labels its data as DP and sends it to the DCR, which loads C’s
public key pubKC as well as privilege prP using a closure. The functions enc and dec
handle encryption and decryption, and analytics refers to any general query.

In this setup, the data providers label their data before sending it to the
DCR. The DCR is loaded with analytics queries from C after P reviews both
the schema and the specific queries requested by C. The DCR is provisioned
with C’s public key, limiting access to the computed analytics solely to C. We
notably use Haskell’s partial application to load the privilege prP , enabling data
unlabeling while restricting the locations of the unlabelP operation.

Consider a synthetic data analytics example with two data providers P1 and
P2 that both store confidential data regarding COVID strains and the corre-
sponding age of patients. An analytics consumer C1 wishes to aggregate this
data and derive the correlation between mean age and the respective COVID
strain. We add a constraint that the analytics should only aggregate COVID
strains that are common to both P1 and P2 (private set intersection [11]).

The DCR exposes two API calls for communication. The first, datasend,
accepts a DCLabeled Row as an argument and is used by P1 and P2 to send
a row labeled with their respective DC Label. The DCR stores the in-memory
data in HasTEE+’s mutable reference type DCRef a. Reading and writing occur
via readRef and writeRef, raising the context’s label accordingly. We omit the
body of datasend for brevity. The full Haskell program is publicly available [36].

Listing 4 (lines 1-7) shows the second interface to the DCR, runQuery, used
by C1 to run the analytics query. A notable operation happens in line 5 where the
unLabelFunc function is applied to each row of the database, labeled with either
P1’s or P2’s DC label. unlabelFunc inspects the label and accordingly uses the
correct privilege to declassify the data. Note, if during the whole computation, a
row’s label gets tainted by both P1 and P2, the unlabel function (not unlabelP,

HasTEE+: Confidential Cloud Computing and Analytics with Haskell 13

1 runQuery :: EnclaveDC (DCRef DB) -> PublicKey

2 -> Priv CNF -> Priv CNF -> EnclaveDC ResultEncrypted

3 runQuery enc_ref_db pubKC1 priv1 priv2 = do

4 labeled_rows <- join $ readRef <$> enc_ref_db

5 rows <- mapM (unlabelFunc priv1 priv2) labeled_rows

6 res_enc <- encrypt_TCB pubKC1 (toStrict $ encode $ query rows)

7 return res_enc -- encryption error-handling elided

8

9 unlabelFunc p1 p2 lrow =

10 case extractOrgName (labelOf lrow) of

11 "P1" -> unlabelP p1 lrow

12 "P2" -> unlabelP p2 lrow

13 _ -> unlabel lrow -- label will float up

14

15 data API = API { datasend :: Secure (DCLabeled Row -> EnclaveDC ())

16 , runQ :: Secure (EnclaveDC ResultEncrypted }

17

18 app = do db <- liftNewRef dcPublic database

19 sfunc <- inEnclave dcDefaultState $ sendData db

20 pubKC1 <- liftIO $ read <$> readFile "ssl/public.key"

21 p1Priv <- liftIO $ privInit (toCNF p1)

22 p2Priv <- liftIO $ privInit (toCNF p2)

23 qfunc <- inEnclave dcDefaultState $ runQuery db pubKC1 p1Priv p2Priv

24 let api = API sfunc qfunc

25 runClient (client1 api)

26 runClient (client2 api)

27 runClient (client3 api)

Listing 4: runQuery unlabels the data, runs the query and encrypts the result;
The app :: App Done computation captures the three clients and the enclave

see line 13) is invoked, floating the context high enough that writes to public
channels are no longer possible.

In the absence of privileges, the EnclaveDCmonad obeys general non-interference
[14]. Hence, privileges, which allow declassification and endorsement, must be
handed out with caution and used in limited places. In app, the privileges are
created (lines 21, 22) and are partially applied to the runQuery function (line 23).
As a result, the enclave loads a partially applied closure, runQuery db pubKC1

p1Priv p2Priv, and it is limited to using the privileges solely within runQuery

and its callees. An interesting future work would be using Haskell’s linear type
support [5] to limit the copying of privileges and make them unforgeable.

The app function demonstrates the overall tierless nature of our DSL. It
describes three clients and the enclave as a single program without specifying
complex data copying protocols or involving multi-project hierarchies. We elide
the body of the clients P1 and P2, involving data retrieval from their databases,
labeling, and sending it to DCR, while C1 calls runQuery and decrypts the
result. We also omit the query function’s implementation, responsible for exe-

14 Abhiroop Sarkar, Alejandro Russo

cuting private set intersection and returning results in a structured format. The
interested reader can find the entire program hosted publicly [36]. In-transit se-
curity, enclave-integrity and client-integrity checks are implicitly enforced on all
communication through HasTEE+’s remote attestation infrastructure.

4.1 Security Analysis

Privacy Protection. The data clean room ensures privacy through - (1) run-
time security, provided by the TEE’s isolation of trusted code and data; (2)
in-transit security, ensured by the RA-TLS protocol; (3) enclave integrity, es-
tablished through remote attestation; (4) client integrity, provided with digital
signatures checked by a monitor (Section 3.2); and (5) information flow control,
implemented using a mix of IFC mechanisms and controlled privilege delegation.

Why is the result encrypted if HasTEE+’s monitor already does
client-integrity checks? This is necessary due to two distinct attacker models:
open-world attacks and closed-world attacks. The digital signature verification in
the monitor protects against open-world attacks, where an unknown malicious
attacker outside our described system attempts to communicate with the DCR.
On the other hand, in a closed-world attack, one of the participating entities, say
P1, may maliciously query the DCR for analytics, even though P1 is intended to
be merely a data provider. Although the monitor will allow this communication,
the encryption will protect the data privacy.

Declassification Dimensions [35] Classifying the DCR along the four
dimensions - Who: Integrity checks in HasTEE+, RA-TLS and data labeling
constrain the who dimension, allowing the DCR alone to declassify the data;
What: The combination of the Haskell type system and dynamic privileges
aim to allow declassification only for the analytics query; Where: The partial-
application-based privilege loading was done to restrict this dimension, ensuring
that only runQuery and its subsequent callees can declassify; When This is
currently not captured but it is fairly straightforward to implement a relative
declassification [35] policy where the analytics is released only after a certain set
of data uploads succeeds, especially using the tierless nature of our DSL.

While HasTEE+’s privacy protection mechanism provides useful guardrails
against information leaks, we emphasize the importance of auditing the trusted
code by all concerned parties to ensure the privileges are not misused.

5 Performance Evaluations

Here, we present performance microbenchmarks that allow for quantifying the
overheads associated with various features in HasTEE+. For benchmarking, we
use the password checker example from Listing 1. We evaluate three particular
sources of overheads - (1) dynamic checks for information flow control, (2) remote
attestation and (3) client-integrity checks performed by the monitoring module.

We plot the overheads associated with each feature in Fig. 6. The X-axis cap-
tures the mean response-time in executing variants of the operation gatewayRA

HasTEE+: Confidential Cloud Computing and Analytics with Haskell 15

Fig. 6. Performance Overheads in HasTEE+. The X-axis represents the mean response
time for a query, both with and without the desired feature enabled, measured in
milliseconds. The response time is averaged over 50 runs for each measure.

((checkpwd api) <@> userInput) (line 14) from Listing 1. A gateway call in-
volves serialising the function arguments, making a remote procedure call to the
enclave, executing the enclave computation, and then deserialising the result to
the client. Measurement were conducted on an Azure Standard DC1s v2 (1 vcpu,
4 GiB memory) SGX machine, using the Intel SGX SDK for Linux.

Dynamic IFC Checks Overhead. In Fig. 6, the first group measures
the overhead due to the runtime checks for IFC. The difference arises from
extra conditional statements checking legal data flow policies. For Listing 1,
the overhead is 2 milliseconds when compared to the non-IFC version. However,
more complex applications (like Section 4) might incur slightly higher overheads.

Remote Attestation (RA) Overhead. The second group shows the RA
overhead, demonstrating a considerable jump in response time with RA enabled.
Much of the latency is attributed to the underlying RA-TLS protocol, imple-
menting TLS version 1.2. In contrast, the non-RA baseline employs plain TCP
for communication, using Linux’s send/recv to enhance communication speed.
The RA version’s mean latency is 863 milliseconds, improvable by establishing
a secure channel instead of initiating the entire handshake protocol each time.

Integrity-check Overhead. The client-integrity check is built on top of
the HasTEE+ RA infrastructure. As a result, for the baseline we use RA mea-
surements from the second group and incorporate integrity checks on top of RA.
The overhead on top of RA is minimal, in the order of 15 milliseconds.

Discussion. The measurements in Fig 6 show that each HasTEE+ feature
incurs maximum overheads in the order of hundreds of milliseconds. The signifi-
cant response time increase for RA is mainly due to the complex TLS handshake
involving multiple hops and communication with the Intel Attestation Service.

16 Abhiroop Sarkar, Alejandro Russo

Given the security-critical nature of confidential computing and considering slow-
downs due to general network latency, we posit that HasTEE+’s overheads are
acceptable, making it a practical choice for security-critical applications.

6 Related Work

We have already discussed projects closely related to HasTEE+, including Has-
TEE [37], GoTEE [13], JE [31], etc., in Sections 1 and 2. Here, we highlight ad-
ditional related work that is relevant to the broader contributions of HasTEE+.

Tierless Programming for Enclaves To the best of our knowledge, HasTEE+

is one of the first practical programming frameworks to introduce the notion of
tierless programming for confidential computing applications. Weisenburger et
al. [49] provide a survey of general multi-tier programming approaches. Among
the surveyed approaches, the HasTEE+ DSL draws inspiration from the Haste
framework [10] and functional choreographic programming [40].

Remote Attestation Infrastructure. HasTEE+ is built on top of the
Intel RA-TLS protocol [21] for binary attestation. In contrast, GuaranTEE [27]
proposes a control-flow attestation technique based on two enclaves, which can
be adapted quite naturally to the HasTEE+ RA infrastructure.

Information Flow Control for TEEs. Gollamudi et al. proposed the
first use of IFC to protect against low-level attackers in TEEs with the IMPE

calculus [16], followed by a more general security calculus, DFLATE [17], for
distributed TEE applications. In contrast to their work, HasTEE+ does not
require language-level modifications or type-system extensions. Instead, it con-
veniently enforces IFC as a library in an existing programming language. At
the OS level, Deluminator [46] offers OS abstractions and userspace APIs for
trace-based tracking of IFC violations in compartmentalized hardware, such as
TEEs. Note that Deluminator is a reporting tool and not an enforcement mech-
anism, in contrast to HasTEE+. Another application of IFC to TEEs is Moat
[41], which formally verifies the confidentiality of enclave programs by proving
the non-interference property [14].

Confidential Data Analytics. Referring to our confidential analytics pat-
tern in Section 4, another proposed design pattern is Privacy Preserving Feder-
ated Learning [26], tailored to machine learning attacker models. We believe such
threat models can be naturally integrated with our proposed design pattern.

7 Conclusion

We introduced HasTEE+, a tierless confidential computing DSL that enforces
dynamic information flow control, along with strong client-integrity and enclave-
integrity checks. We also proposed a general confidential analytics pattern, ex-
pressed as a single program in HasTEE+. Additionally, we presented perfor-
mance evaluations that demonstrate acceptable overheads. Our evaluations, while
conducted on Intel SGX, illustrate HasTEE+’s general applicability to ARM
TrustZone, AMD SEV, and Intel TDX machines. Furthermore, our library-based
partitioning and IFC approach is extendable to other programming languages.

HasTEE+: Confidential Cloud Computing and Analytics with Haskell 17

References

1. ARM: ARM TrustZone (2004), https://www.arm.com/technologies/
trustzone-for-cortex-a

2. ARM: Mbed TLS (2009), https://tls.mbed.org
3. Arnautov, S., Trach, B., Gregor, F., Knauth, T., Martin, A., Priebe, C., Lind,

J., Muthukumaran, D., O’Keeffe, D., Stillwell, M., Goltzsche, D., Eyers, D.M.,
Kapitza, R., Pietzuch, P.R., Fetzer, C.: SCONE: secure linux containers with intel
SGX. In: Keeton, K., Roscoe, T. (eds.) 12th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2016, Savannah, GA, USA, Novem-
ber 2-4, 2016. pp. 689–703. USENIX Association (2016), https://www.usenix.org/
conference/osdi16/technical-sessions/presentation/arnautov

4. Baumann, A., Peinado, M., Hunt, G.C.: Shielding applications from an un-
trusted cloud with haven. ACM Trans. Comput. Syst. 33(3), 8:1–8:26 (2015).
https://doi.org/10.1145/2799647, https://doi.org/10.1145/2799647

5. Bernardy, J., Boespflug, M., Newton, R.R., Jones, S.P., Spiwack, A.: Linear
haskell: practical linearity in a higher-order polymorphic language. Proc. ACM Pro-
gram. Lang. 2(POPL), 5:1–5:29 (2018). https://doi.org/10.1145/3158093, https:
//doi.org/10.1145/3158093

6. Biba, K.J.: Integrity considerations for secure computer systems. Tech. rep.,
MITRE Corp. (04 1977)

7. Chen, G., Chen, S., Xiao, Y., Zhang, Y., Lin, Z., Lai, T.: Sgxpectre: Stealing intel
secrets from SGX enclaves via speculative execution. IEEE Secur. Priv. 18(3), 28–
37 (2020). https://doi.org/10.1109/MSEC.2019.2963021, https://doi.org/10.1109/
MSEC.2019.2963021

8. Cowan, C., Wagle, F., Pu, C., Beattie, S., Walpole, J.: Buffer overflows: Attacks and
defenses for the vulnerability of the decade. In: Proceedings DARPA Information
Survivability Conference and Exposition. DISCEX’00. vol. 2, pp. 119–129. IEEE
(2000)

9. Denning, D.E.: A lattice model of secure information flow. Commun. ACM 19(5),
236–243 (1976). https://doi.org/10.1145/360051.360056, https://doi.org/10.1145/
360051.360056

10. Ekblad, A., Claessen, K.: A seamless, client-centric programming model for type
safe web applications. In: Swierstra, W. (ed.) Proceedings of the 2014 ACM SIG-
PLAN symposium on Haskell, Gothenburg, Sweden, September 4-5, 2014. pp.
79–89. ACM (2014). https://doi.org/10.1145/2633357.2633367, https://doi.org/
10.1145/2633357.2633367

11. Escalera, D.M., Agudo, I., López, J.: Private set intersection: A sys-
tematic literature review. Comput. Sci. Rev. 49, 100567 (2023).
https://doi.org/10.1016/J.COSREV.2023.100567, https://doi.org/10.1016/j.
cosrev.2023.100567

12. Geppert, T., Deml, S., Sturzenegger, D., Ebert, N.: Trusted execution envi-
ronments: Applications and organizational challenges. Frontiers Comput. Sci.
4 (2022). https://doi.org/10.3389/FCOMP.2022.930741, https://doi.org/10.3389/
fcomp.2022.930741

13. Ghosn, A., Larus, J.R., Bugnion, E.: Secured routines: Language-based construc-
tion of trusted execution environments. In: Malkhi, D., Tsafrir, D. (eds.) 2019
USENIX Annual Technical Conference, USENIX ATC 2019, Renton, WA, USA,
July 10-12, 2019. pp. 571–586. USENIX Association (2019), https://www.usenix.
org/conference/atc19/presentation/ghosn

https://www.arm.com/technologies/trustzone-for-cortex-a
https://www.arm.com/technologies/trustzone-for-cortex-a
https://tls.mbed.org
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
https://doi.org/10.1145/2799647
https://doi.org/10.1145/2799647
https://doi.org/10.1145/3158093
https://doi.org/10.1145/3158093
https://doi.org/10.1145/3158093
https://doi.org/10.1109/MSEC.2019.2963021
https://doi.org/10.1109/MSEC.2019.2963021
https://doi.org/10.1109/MSEC.2019.2963021
https://doi.org/10.1145/360051.360056
https://doi.org/10.1145/360051.360056
https://doi.org/10.1145/360051.360056
https://doi.org/10.1145/2633357.2633367
https://doi.org/10.1145/2633357.2633367
https://doi.org/10.1145/2633357.2633367
https://doi.org/10.1016/J.COSREV.2023.100567
https://doi.org/10.1016/j.cosrev.2023.100567
https://doi.org/10.1016/j.cosrev.2023.100567
https://doi.org/10.3389/FCOMP.2022.930741
https://doi.org/10.3389/fcomp.2022.930741
https://doi.org/10.3389/fcomp.2022.930741
https://www.usenix.org/conference/atc19/presentation/ghosn
https://www.usenix.org/conference/atc19/presentation/ghosn

18 Abhiroop Sarkar, Alejandro Russo

14. Goguen, J.A., Meseguer, J.: Security policies and security models. In: 1982 IEEE
Symposium on Security and Privacy, Oakland, CA, USA, April 26-28, 1982. pp. 11–
20. IEEE Computer Society (1982). https://doi.org/10.1109/SP.1982.10014, https:
//doi.org/10.1109/SP.1982.10014

15. Goldman, K., Perez, R., Sailer, R.: Linking remote attestation to secure tunnel end-
points. In: Proceedings of the first ACM workshop on Scalable trusted computing.
pp. 21–24 (2006)

16. Gollamudi, A., Chong, S.: Automatic enforcement of expressive security poli-
cies using enclaves. In: Visser, E., Smaragdakis, Y. (eds.) Proceedings of the
2016 ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2016, part of SPLASH 2016,
Amsterdam, The Netherlands, October 30 - November 4, 2016. pp. 494–513.
ACM (2016). https://doi.org/10.1145/2983990.2984002, https://doi.org/10.1145/
2983990.2984002

17. Gollamudi, A., Chong, S., Arden, O.: Information flow control for distributed
trusted execution environments. In: 32nd IEEE Computer Security Founda-
tions Symposium, CSF 2019, Hoboken, NJ, USA, June 25-28, 2019. pp. 304–
318 (2019). https://doi.org/10.1109/CSF.2019.00028, https://doi.org/10.1109/
CSF.2019.00028

18. Intel: Intel SGX Intro: Passing Data Between App and Enclave (2016),
https://www.intel.com/content/www/us/en/developer/articles/technical/
sgx-intro-passing-data-between-app-and-enclave.html

19. Intel: tlibc - an alternative to glibc (2018), https://github.com/intel/linux-sgx/
tree/master/common/inc/tlibc

20. Intel: Intel Trust Domain Extensions (2021), https://www.intel.com/content/
www/us/en/developer/tools/trust-domain-extensions/overview.html

21. Knauth, T., Steiner, M., Chakrabarti, S., Lei, L., Xing, C., Vij, M.: Integrating
remote attestation with transport layer security. arXiv preprint arXiv:1801.05863
(2018)

22. LinuxSGX: Linux SGX Remote Attestation (2017), https://github.com/
svartkanin/linux-sgx-remoteattestation/blob/master/Application/isv enclave/
isv enclave.cpp#L152-L308

23. Marlow, S., Jones, S.L.P., Singh, S.: Runtime support for multicore haskell.
In: Hutton, G., Tolmach, A.P. (eds.) Proceeding of the 14th ACM SIG-
PLAN international conference on Functional programming, ICFP 2009,
Edinburgh, Scotland, UK, August 31 - September 2, 2009. pp. 65–78.
ACM (2009). https://doi.org/10.1145/1596550.1596563, https://doi.org/10.1145/
1596550.1596563

24. McKeen, F., Alexandrovich, I., Berenzon, A., Rozas, C.V., Shafi, H., Shanbhogue,
V., Savagaonkar, U.R.: Innovative instructions and software model for isolated
execution. In: Lee, R.B., Shi, W. (eds.) HASP 2013, The Second Workshop on
Hardware and Architectural Support for Security and Privacy, Tel-Aviv, Israel,
June 23-24, 2013. p. 10. ACM (2013). https://doi.org/10.1145/2487726.2488368,
https://doi.org/10.1145/2487726.2488368

25. Microsoft: Windows cryptoapi spoofing vulnerability (2020), https://nvd.nist.gov/
vuln/detail/CVE-2020-0601

26. Mo, F., Haddadi, H., Katevas, K., Marin, E., Perino, D., Kourtellis, N.:
PPFL: privacy-preserving federated learning with trusted execution environ-
ments. In: Banerjee, S., Mottola, L., Zhou, X. (eds.) MobiSys ’21: The 19th
Annual International Conference on Mobile Systems, Applications, and Ser-
vices, Virtual Event, Wisconsin, USA, 24 June - 2 July, 2021. pp. 94–108.

https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1145/2983990.2984002
https://doi.org/10.1145/2983990.2984002
https://doi.org/10.1145/2983990.2984002
https://doi.org/10.1109/CSF.2019.00028
https://doi.org/10.1109/CSF.2019.00028
https://doi.org/10.1109/CSF.2019.00028
https://www.intel.com/content/www/us/en/developer/articles/technical/sgx-intro-passing-data-between-app-and-enclave.html
https://www.intel.com/content/www/us/en/developer/articles/technical/sgx-intro-passing-data-between-app-and-enclave.html
https://github.com/intel/linux-sgx/tree/master/common/inc/tlibc
https://github.com/intel/linux-sgx/tree/master/common/inc/tlibc
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/overview.html
https://github.com/svartkanin/linux-sgx-remoteattestation/blob/master/Application/isv_enclave/isv_enclave.cpp#L152-L308
https://github.com/svartkanin/linux-sgx-remoteattestation/blob/master/Application/isv_enclave/isv_enclave.cpp#L152-L308
https://github.com/svartkanin/linux-sgx-remoteattestation/blob/master/Application/isv_enclave/isv_enclave.cpp#L152-L308
https://doi.org/10.1145/1596550.1596563
https://doi.org/10.1145/1596550.1596563
https://doi.org/10.1145/1596550.1596563
https://doi.org/10.1145/2487726.2488368
https://doi.org/10.1145/2487726.2488368
https://nvd.nist.gov/vuln/detail/CVE-2020-0601
https://nvd.nist.gov/vuln/detail/CVE-2020-0601

HasTEE+: Confidential Cloud Computing and Analytics with Haskell 19

ACM (2021). https://doi.org/10.1145/3458864.3466628, https://doi.org/10.1145/
3458864.3466628

27. Morbitzer, M., Kopf, B., Zieris, P.: Guarantee: Introducing control-flow attestation
for trusted execution environments. In: 16th IEEE International Conference on
Cloud Computing, CLOUD 2023, Chicago, IL, USA, July 2-8, 2023. pp. 547–553.
IEEE (2023). https://doi.org/10.1109/CLOUD60044.2023.00073, https://doi.org/
10.1109/CLOUD60044.2023.00073

28. Mulligan, D.P., Petri, G., Spinale, N., Stockwell, G., Vincent, H.J.M.:
Confidential computing - a brave new world. In: 2021 International Sym-
posium on Secure and Private Execution Environment Design (SEED),
Washington, DC, USA, September 20-21, 2021. pp. 132–138. IEEE (2021).
https://doi.org/10.1109/SEED51797.2021.00025, https://doi.org/10.1109/
SEED51797.2021.00025

29. Myers, A.C., Liskov, B.: Protecting privacy using the decentralized la-
bel model. ACM Trans. Softw. Eng. Methodol. 9(4), 410–442 (2000).
https://doi.org/10.1145/363516.363526, https://doi.org/10.1145/363516.363526

30. Northwood, C.: The full stack developer: your essential guide to the everyday skills
expected of a modern full stack web developer. Springer (2018)

31. Oak, A., Ahmadian, A.M., Balliu, M., Salvaneschi, G.: Language support for se-
cure software development with enclaves. In: 34th IEEE Computer Security Foun-
dations Symposium, CSF 2021, Dubrovnik, Croatia, June 21-25, 2021. pp. 1–16.
IEEE (2021). https://doi.org/10.1109/CSF51468.2021.00037, https://doi.org/10.
1109/CSF51468.2021.00037

32. Ramsingh, A., Singer, J., Trinder, P.: Do fewer tiers mean fewer tears? eliminat-
ing web stack components to improve interoperability. CoRR abs/2207.08019
(2022). https://doi.org/10.48550/ARXIV.2207.08019, https://doi.org/10.48550/
arXiv.2207.08019

33. Russinovich, M., Costa, M., Fournet, C., Chisnall, D., Delignat-Lavaud, A., Cleb-
sch, S., Vaswani, K., Bhatia, V.: Toward confidential cloud computing. Commun.
ACM 64(6), 54–61 (2021). https://doi.org/10.1145/3453930, https://doi.org/10.
1145/3453930

34. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel.
Areas Commun. 21(1), 5–19 (2003). https://doi.org/10.1109/JSAC.2002.806121,
https://doi.org/10.1109/JSAC.2002.806121

35. Sabelfeld, A., Sands, D.: Declassification: Dimensions and principles. J. Com-
put. Secur. 17(5), 517–548 (2009). https://doi.org/10.3233/JCS-2009-0352, https:
//doi.org/10.3233/JCS-2009-0352

36. Sarkar, A.: Confidential private set intersection with hastee (2023), https://github.
com/Abhiroop/HasTEE/blob/lio-ifc/app/Main.hs

37. Sarkar, A., Krook, R., Russo, A., Claessen, K.: HasTEE: Programming
Trusted Execution Environments with Haskell. In: McDonell, T.L., Vazou, N.
(eds.) Proceedings of the 16th ACM SIGPLAN International Haskell Sym-
posium, Haskell 2023, Seattle, WA, USA, September 8-9, 2023. pp. 72–88.
ACM (2023). https://doi.org/10.1145/3609026.3609731, https://doi.org/10.1145/
3609026.3609731

38. Sev-Snp, A.: Strengthening vm isolation with integrity protection and more. White
Paper, January 53, 1450–1465 (2020)

39. Shacham, H.: The geometry of innocent flesh on the bone: return-into-libc without
function calls (on the x86). In: Ning, P., di Vimercati, S.D.C., Syverson, P.F.
(eds.) Proceedings of the 2007 ACM Conference on Computer and Communications

https://doi.org/10.1145/3458864.3466628
https://doi.org/10.1145/3458864.3466628
https://doi.org/10.1145/3458864.3466628
https://doi.org/10.1109/CLOUD60044.2023.00073
https://doi.org/10.1109/CLOUD60044.2023.00073
https://doi.org/10.1109/CLOUD60044.2023.00073
https://doi.org/10.1109/SEED51797.2021.00025
https://doi.org/10.1109/SEED51797.2021.00025
https://doi.org/10.1109/SEED51797.2021.00025
https://doi.org/10.1145/363516.363526
https://doi.org/10.1145/363516.363526
https://doi.org/10.1109/CSF51468.2021.00037
https://doi.org/10.1109/CSF51468.2021.00037
https://doi.org/10.1109/CSF51468.2021.00037
https://doi.org/10.48550/ARXIV.2207.08019
https://doi.org/10.48550/arXiv.2207.08019
https://doi.org/10.48550/arXiv.2207.08019
https://doi.org/10.1145/3453930
https://doi.org/10.1145/3453930
https://doi.org/10.1145/3453930
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.3233/JCS-2009-0352
https://doi.org/10.3233/JCS-2009-0352
https://doi.org/10.3233/JCS-2009-0352
https://github.com/Abhiroop/HasTEE/blob/lio-ifc/app/Main.hs
https://github.com/Abhiroop/HasTEE/blob/lio-ifc/app/Main.hs
https://doi.org/10.1145/3609026.3609731
https://doi.org/10.1145/3609026.3609731
https://doi.org/10.1145/3609026.3609731

20 Abhiroop Sarkar, Alejandro Russo

Security, CCS 2007, Alexandria, Virginia, USA, October 28-31, 2007. pp. 552–561.
ACM (2007), https://doi.org/10.1145/1315245.1315313

40. Shen, G., Kashiwa, S., Kuper, L.: Haschor: Functional choreographic programming
for all (functional pearl). Proc. ACM Program. Lang. 7(ICFP), 541–565 (2023).
https://doi.org/10.1145/3607849, https://doi.org/10.1145/3607849

41. Sinha, R., Rajamani, S.K., Seshia, S.A., Vaswani, K.: Moat: Verifying confiden-
tiality of enclave programs. In: Ray, I., Li, N., Kruegel, C. (eds.) Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Se-
curity, Denver, CO, USA, October 12-16, 2015. pp. 1169–1184. ACM (2015),
https://doi.org/10.1145/2810103.2813608

42. Stefan, D., Russo, A., Mazières, D., Mitchell, J.C.: Disjunction category labels.
In: Laud, P. (ed.) Information Security Technology for Applications - 16th Nordic
Conference on Secure IT Systems, NordSec 2011, Tallinn, Estonia, October 26-28,
2011, Revised Selected Papers. Lecture Notes in Computer Science, vol. 7161, pp.
223–239. Springer (2011), https://doi.org/10.1007/978-3-642-29615-4 16

43. Stefan, D., Russo, A., Mitchell, J.C., Mazières, D.: Flexible dynamic information
flow control in haskell. In: Claessen, K. (ed.) Proceedings of the 4th ACM SIG-
PLAN Symposium on Haskell, Haskell 2011, Tokyo, Japan, 22 September 2011.
pp. 95–106. ACM (2011), https://doi.org/10.1145/2034675.2034688

44. Stefan, D., Yang, E.Z., Marchenko, P., Russo, A., Herman, D., Karp, B., Mazières,
D.: Protecting users by confining javascript with COWL. In: Flinn, J., Levy,
H. (eds.) 11th USENIX Symposium on Operating Systems Design and Im-
plementation, OSDI ’14, Broomfield, CO, USA, October 6-8, 2014. pp. 131–
146. USENIX Association (2014), https://www.usenix.org/conference/osdi14/
technical-sessions/presentation/stefan

45. Stumpf, F., Tafreschi, O., Röder, P., Eckert, C., et al.: A robust integrity reporting
protocol for remote attestation. In: Proceedings of the Workshop on Advances in
Trusted Computing (WATC). p. 65 (2006)

46. Tarkhani, Z., Madhavapeddy, A.: Information flow tracking for heterogeneous com-
partmentalized software. In: Proceedings of the 26th International Symposium on
Research in Attacks, Intrusions and Defenses, RAID 2023, Hong Kong, China,
October 16-18, 2023. pp. 564–579. ACM (2023), https://doi.org/10.1145/3607199.
3607235

47. Vault, H.: Intel SGX deprecation review (2022), https://hardenedvault.net/blog/
2022-01-15-sgx-deprecated/

48. Wang, H., Wang, P., Ding, Y., Sun, M., Jing, Y., Duan, R., Li, L., Zhang,
Y., Wei, T., Lin, Z.: Towards memory safe enclave programming with rust-
sgx. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2019, London, UK, November 11-15, 2019. pp. 2333–2350. ACM (2019),
https://doi.org/10.1145/3319535.3354241

49. Weisenburger, P., Wirth, J., Salvaneschi, G.: A survey of multitier programming.
ACM Comput. Surv. 53(4), 81:1–81:35 (2021), https://doi.org/10.1145/3397495

50. Zegzhda, D.P., Usov, E.S., Nikol’skii, V.A., Pavlenko, E.: Use of intel SGX to
ensure the confidentiality of data of cloud users. Autom. Control. Comput. Sci.
51(8), 848–854 (2017), https://doi.org/10.3103/S0146411617080284

51. Zeldovich, N., Boyd-Wickizer, S., Kohler, E., Mazières, D.: Making information
flow explicit in histar. In: Bershad, B.N., Mogul, J.C. (eds.) 7th Symposium on
Operating Systems Design and Implementation (OSDI ’06), November 6-8, Seat-
tle, WA, USA. pp. 263–278. USENIX Association (2006), http://www.usenix.org/
events/osdi06/tech/zeldovich.html

https://doi.org/10.1145/1315245.1315313
https://doi.org/10.1145/3607849
https://doi.org/10.1145/3607849
https://doi.org/10.1145/2810103.2813608
https://doi.org/10.1007/978-3-642-29615-4_16
https://doi.org/10.1145/2034675.2034688
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/stefan
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/stefan
https://doi.org/10.1145/3607199.3607235
https://doi.org/10.1145/3607199.3607235
https://hardenedvault.net/blog/2022-01-15-sgx-deprecated/
https://hardenedvault.net/blog/2022-01-15-sgx-deprecated/
https://doi.org/10.1145/3319535.3354241
https://doi.org/10.1145/3397495
https://doi.org/10.3103/S0146411617080284
http://www.usenix.org/events/osdi06/tech/zeldovich.html
http://www.usenix.org/events/osdi06/tech/zeldovich.html

	HasTEE+: Confidential Cloud Computing and Analytics with Haskell

