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HasTEE - Confidential Computing on Trusted Execution
Environments with Haskell
ANONYMOUS AUTHOR(S)

Growing concerns about data privacy and confidentiality have spurred the development of Confidential

Computing, a security paradigm that facilitates deploying applications in low-trust environments like the

cloud and IoT. Confidential Computing allows this low level of trust on various platforms through the support

of hardware-enforced memory isolation units known as Trusted Execution Environments (TEEs). Popular TEEs,

such as Intel SGX or ARM TrustZone, isolate applications from low-level system software with large codebases,

such as operating systems and hypervisors, reducing the Trusted Computing Base (TCB) of applications.

However, the adoption of this technology has been obstructed by the awkward programmingmodel enforced

by most TEEs, which requires partitioning an existing application into trusted and untrusted components. The

toolchain that supports these components relies entirely on low-level C/C++ libraries that are error-prone,

memory-unsafe, and have the potential for accidental information leakage.

We address the above concerns through HasTEE, a Haskell library for programming TEEs. HasTEE presents

a type-safe, high-level programming model that enables the execution of Haskell programs on the Intel SGX

TEE. The library is capable of automatically partitioning a Haskell application, using the type system, and

then running the trusted component of the application on an SGX enclave via our modified GHC runtime.

Furthermore, the purity and expressive type system of Haskell allows HasTEE to enforce Information Flow

Control (IFC) techniques that prevent unintentional leakage of confidential data from the TEE memory.

Our partitioning approach is notably lightweight and does not involve any modification of the Glasgow

Haskell Compiler. We demonstrate the practicality of HasTEE across a variety of domains through case studies

on (1) privacy-preserving machine learning, (2) an encrypted password wallet, and (3) a data clean room

providing differential privacy.

CCS Concepts: • Security and privacy→ Trusted computing; Information flow control; Security in
hardware; • Software and its engineering→ Functional languages; Domain specific languages.

Additional Key Words and Phrases: Trusted Execution Environment, Intel SGX, Haskell, Enclave

ACM Reference Format:
Anonymous Author(s). 2023. HasTEE - Confidential Computing on Trusted Execution Environments with

Haskell. 1, 1 (March 2023), 31 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Confidential Computing is an emerging security paradigm that is progressively transforming the

semiconductor industry, with a consequential shift in how software is designed [Mulligan et al.

2021]. At its core, confidential computing aims to secure what is known as data in use.
Data in use refers to in-memory data that is distributed across the DRAM, cache lines, page tables

and other CPU registers. While encryption has been fairly successful in protecting secrets for data
at rest (such as databases and file systems) as well as data in transit (such as networks using TLS),

the need for efficiency and performance has prevented encryption from effectively protecting data
in use, which has seen an unprecedented rise in vulnerabilities in the last decade [Checkoway and

Shacham 2013; Kocher et al. 2018; Lipp et al. 2018].
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2 Anon.

To protect data in use, hardware vendors such as Intel, ARM, and AMD have introduced the

concept of a Trusted Execution Environment (TEE), which provides hardware-enforced isolation

for in-memory data. A TEE unit, such as the Intel SGX [Intel 2015] or ARM TrustZone [ARM

2004], provides a disjoint region of code and data memory that allows for the physical isolation of a

program’s execution and state from the underlying operating system, hypervisor, I/O peripherals,

firmware, and even the physical compromise of a device. As such, the TEE hardware unit has been

heralded as a leading contender to enforce a strong notion of trust in areas such as cloud computing

[Baumann et al. 2015; Zegzhda et al. 2017], IoT [Lesjak et al. 2015] and blockchain [Bao et al. 2020].

However, despite providing such a strong threat model, the adoption of TEEs in modern software

development has faced resistance due to their awkward programming model [Decentriq 2022].

At a high level, the programming model requires splitting the state of the program into trusted

and untrusted components and dividing the entire logic into two separate software projects. This

is often a complex and error-prone process. The issue is further exacerbated by the fact that the

API provided by the hardware is entirely based on languages such as C/C++, which are low-level

and can open further opportunities to exploit well-known memory-unsafe vulnerabilities such as

return-oriented programming (ROP) [Shacham 2007].

Efforts have been made to port high-level managed languages such as GoTEE [Ghosn et al. 2019],

a superset of Go, and 𝐽𝐸 [Oak et al. 2021], a subset of Java, onto TEEs. Both efforts, however, make

large modifications to the respective compiler to parse the source code for effective identification

of the trusted and untrusted parts of the code.

Virtualization-based solutions, such as AMD SEV [AMD 2018], on the other hand, typically

virtualize an entire application platform, such as the hypervisor. The tradeoff is that the trusted

computing base becomes larger and the granularity of secure data becomes coarser.

Our contribution through this paper is the HasTEE Haskell library, which offers a high-level

programming model for developing TEE applications. In contrast with GoTEE and 𝐽𝐸 , our imple-

mentation does not require any modification of the canonical Glasgow Haskell Compiler (GHC)

[Jones et al. 1993]. The GHC runtime requires modification to run on the enclave but remains

capable of hosting the entire Haskell language (with extensions) supported by GHC 8.8.

The partitioning of a TEE program is accomplished entirely through a 200-line library that uses

the Haskell type system to distinguish between the trusted and untrusted components of a program.

The granularity of secure data and code in HasTEE remains finer than virtualization-based solutions

such as AMD SEV, while keeping a much smaller trusted code base. One benefit of running Haskell

on a TEE is the ability to enforce language-based information flow control [Russo et al. 2008] on

data that crosses the boundary between the trusted and untrusted parts of the application.

Listing 1 presents a sample password checker application written in HasTEE. HasTEE adopts the

term Enclave from Intel’s nomenclature to refer to the software that runs inside the TEE unit.

1 pwdChkr :: Enclave String -> String -> Enclave Bool

2 pwdChkr pwd guess = fmap (== guess) pwd

3

4 passwordChecker :: App Done

5 passwordChecker = do

6 paswd <- enclaveConstant "secret"

7 enclaveFunc <- secure $ pwdChkr paswd

8 runClient $ do -- the Client monad

9 userInput <- liftIO $ putStrLn "Enter your password" >> liftIO getLine

10 res <- onEnclave (enclaveFunc <.> userInput)

11 liftIO $ putStrLn $ "Your login attempt returned " <> (show res)

Listing 1. A password checker written in HasTEE

, Vol. 1, No. 1, Article . Publication date: March 2023.
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HasTEE internally uses conditional compilation provided by GHC to swap in different imple-

mentations of the HasTEE API depending on whether it is compiling for the trusted execution

environment or the untrusted client. The two compilations use modules that export the same API

but differ in the underlying implementations of the functions.

The distinction between the trusted and untrusted parts of the application is done via the type

system that encodes the former as the Enclave type (line 1) and the latter as the Client type (type
inferred in line 8). At a high level, the untrusted client is in charge of driving the application, while

the enclave is assigned the role of a computational and/or storage resource that services the client’s

requests instead of driving the program.

Line 6 holds the secret string that we want to protect. The enclaveConstant function accepts

the secret string and gets compiled to a no-op term for the client. As a result, the untrusted client

can never observe the secret string. The TEE, on the other hand, is the one that holds the string

in memory. Line 7 uses the secure call to obtain a reference to the secure pwdChkr function and

then uses a combination of the onEnclave and <.> combinators (Line 10) to execute the function

pwdChkr on the enclave and obtain the result on the client side.

HasTEE connects an application (passwordChecker) to Haskell’s mainmethod using the runApp
:: App a -> IO a function that executes the application. We explain the HasTEE API in detail

in Section 4.2 and the semantics in Section 4.3.

Partitioning is done by compiling Listing 1 twice using a conditional flag to assign different

semantics to the two programs. Fig 1 shows the partitioning at a high level. This approach is inspired

by work on the Haste.App library, used to partition a server and client [Ekblad and Claessen 2014]

for web programming.

Fig. 1. The HasTEE partitioning scheme

For the information flow control (IFC), the underlying implementation of the Enclave type uses

a restricted IO monad in the style of MAC monads [Russo 2015]. The monad significantly constrains

the scope of side-effecting operations to protect the confidentiality of data within the enclave. A

detailed account is given in Section 4.5. We summarise our contributions below.

Contributions
• A type-safe, high-level programming model. The HasTEE library enables developers

to program a TEE environment, such as Intel SGX, using Haskell - a type-safe, memory-

managed language whose expressive type system can be leveraged to enforce various

security constraints. Additionally, HasTEE allows programming in a familiar client-server

style programming model (Section 4.2), an improvement over the low-level Intel SGX APIs.

• Automatic Partitioning. A key part of programming TEEs, partitioning the trusted and

untrusted part of the program, is done automatically using the type system (details in

Section 4.4). Crucially, our approach does not require any modification of the GHC compiler

, Vol. 1, No. 1, Article . Publication date: March 2023.
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4 Anon.

and can be adapted to other programming languages, as long as their runtime can run on

the desired TEE infrastructure.

• Information Flow Control (IFC). Drawing inspiration from restricted IO monad families

in Haskell, we designed an Enclave monad that prevents accidental leaks of secret data

by TEE programmers (details in Section 4.5). Hence, our Enclave monad enables writing

applications with a relatively low level of trust placed on the enclave programmer.

• Practicality.We illustrate the practicality of the HasTEE library through three case studies

across different domains - (1) a Federated Learning example (Section 5.1), (2) an encrypted

password wallet (Section 5.2) and (3) a differentially-private data clean room (Section 5.3).

The examples also demonstrate the simplicity of TEE development enabled by HasTEE.

2 BACKGROUND
This section provides background information on the specific TEE environment that we target with

the HasTEE library - Intel SGX.

Intel Software Guard Extensions (SGX)
Intel Software Guard Extensions (SGX) [Intel 2015] is a set of security-related instructions supported

since Intel’s sixth-generation Skylake processor, which can enhance the security of applications

by providing a secure enclave for processing sensitive data. The enclave is a disjoint portion of

memory separate from the DRAM, where sensitive data and code reside, beyond the influence of an

untrusted operating system and other low-level software. Fig. 2 illustrates the difference in attack

surface between an application without enclaves and one that has them.

Fig. 2. Intel SGX Attack Surface (Image source [Intel 2018a])

Internally, SGX reserves a 128 MB segment of the physical memory called the Processor Reserved
Memory. A subset of this memory holds the enclave memory pages in an area called Enclave Page
Cache (EPC). The CPU protects the confidentiality of the memory residing in shared cache lines by

encrypting the cache when it gets evicted, and decrypting it as it is loaded into the enclave memory

while the CPU runs in enclave mode. This incurs a four-fold performance hit [Zhao et al. 2016] but

provides stricter hardware-enforced memory isolation.

Intel offers an SGX SDK [Intel 2016] for programming applications with enclaves. The SDK

requires partitioning an application into two parts such that the sensitive data resides in a separate

trusted C/C++ project from the untrusted data and code. The SDK provides a specialised set of

function calls, referred to as ecall, to access the enclave, as well as an ocall API for the enclave to
communicate with the untrusted client.

The boundary between the client and enclave is defined using a specialised Enclave Description
Language (EDL). The SGX SDK parses EDL files using a special tool called edger8r, which is part of

, Vol. 1, No. 1, Article . Publication date: March 2023.
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the SDK. This tool generates two bridge files that ensure data transfer between projects is done

through copying, rather than sharing via pointers, to prevent an adversary from compromising the

state of the enclave through pointer manipulation. Fig 3 shows the SDK’s programming model.

Fig. 3. Intel SGX SDK Programming Model

The primary objective of an application developer when working with enclaves is to minimize

the Trusted Computing Base (TCB). By placing the operating system, hypervisor, and other system

software outside the enclave, the size of the TCB is drastically reduced compared to an application

without an enclave. For the very essential system software, such as libc (the C standard library),

which is required to run any software application, the SGX SDK provides a minimal and lightweight

implementation called tlibc [Intel 2018b].
Overall, the programming of an SGX enclave involves understanding a fairly complex control

flow between the untrusted and the trusted project. The SDK provides an API of 200+ functions to

manage the life cycle of an enclave. One of the key difficulties observed in programming enclaves

was the awkwardness of enforcing this multi-project programming model on a typical software

project. Additionally, the restricted tlibc library significantly hinders the ability to run complex

applications on the enclaves, beyond those written in vanilla C/C++.

3 KEY IDEA: A TYPED, HIGH-LEVEL PROGRAMMING MODEL FOR ENCLAVES
The key contribution of this paper is the HasTEE library, which aims to simplify the programming

of enclaves. The library contributes the following:

(1) HasTEE enables the programming of enclaves in a high-level, memory-managed, statically-

typed programming language - Haskell. By running Haskell on an enclave, developers can

utilize its expressive type system to type-check the safety of interactions between the client

and the enclave.

(2) HasTEE allows expressing enclave-based programs in a familiar single-program, client-

server-based programmingmodel rather than the low-level, multi-project approach provided

by the SGX SDK.

(3) HasTEE, being embedded in Haskell, enables the expression of language-based security

constraints such as Information Flow Control (IFC) on sensitive data that moves in and out

of the enclave memory.

One of the key challenges in accomplishing point (1) is running the GHC Haskell Runtime

[Marlow et al. 2009] on an enclave. A Haskell program relies on the runtime for essential tasks

such as memory allocation, concurrency, I/O management, etc. The GHC runtime heavily depends

on well-known C standard libraries, such as glibc on Linux [GNUDevs 1991] and msvcrt on

, Vol. 1, No. 1, Article . Publication date: March 2023.
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Windows [Microsoft 1994]. In contrast, the Intel SGX SDK, as discussed in the previous section,

provides a much more restricted libc known as tlibc.
This results in the fact that several libc calls used by the GHC runtime such as mmap, madvise,

epoll, select and 100+ other functions become unavailable. Even the core threading library used

by the GHC runtime, pthread, has a much more restricted API on the SGX SDK. To solve this

conundrum, we have patched portions of the GHC runtime and used functionalities from a library

OS, Gramine [C. Tsai, Porter, et al. 2017], to enable the execution of GHC-compiled programs on

the enclave.

The Programming Model and Partitioning
Once Haskell programs are capable of running on an enclave, there is the requirement of parti-

tioning the original source program. As mentioned in point (2) above, HasTEE doesn’t require the

programmer to manually partition the program but uses a conditional compilation trick to partition

the same compilation unit into two parts.

The conditional compilation tactic was first presented in Haste.App [Ekblad and Claessen

2014], which is a Haskell library for web programming. The library automatically partitions the

application into a Client and Server type using a conditional compilation trick that swaps in

different implementations of the terms corresponding to the above types. The function calls between

the Client and Server are checked for type safety at compile time, where they are replaced with

corresponding remote procedure calls (RPC) at runtime.

We adopt the same partitioning tactic owing to its simplicity, as it does not require any compiler

extensions or elaborate dependency analysis passes to distinguish between the underlying types.

The codebase involved in other complex partitioning approaches [Ghosn et al. 2019; Oak et al.

2021] becomes part of the Trusted Computing Base (TCB), creating a larger TCB. In contrast, the

conditional compilation approach does not add any code to the TCB. Fig 4 shows the partitioned

software stack in the HasTEE approach.

Fig. 4. The untrusted software (left) and the trusted software stack (right)

Post-partitioning, it is natural to use the client-server-style programming model for programming

the enclave. In this model (example in Listing 1), the client remains the primary driver of the program

while utilizing the enclave as a computational and/or storage resource, rather than making it the

main driver of the program. At compile time, the source program gets type safety because of being

written in Haskell, while at runtime, the HasTEE library handles the copying of the actual messages

between the client and the enclave memory The detailed API is presented in Section 4.2.

Information Flow Control on Enclaves
As stated in point (3) above, being a Haskell library enables HasTEE to tap into the library-based

Information Flow Control techniques in Haskell [Buiras et al. 2015; Russo 2015; Russo et al. 2008].

The IFC literature distinguishes between security-critical and security-relaxed monad families

using a Sec H and a Sec Lmonad. We have a similar security-level hierarchy between the Enclave
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and Client monads, respectively. Accordingly, we design the Enclave monad such that it restricts

the possible variants of I/O operations. Due to the security-critical nature of the Enclave monad,

we include a trust operator, which is similar to the endorse function found in IFC literature.

TEE Independence
Another benefit of being a high-level programming model is that it provides an abstraction over

low-level system APIs offered by the SGX SDK. As a result, the principles applied in programming

Intel SGX, should translate to the programming of other popular TEEs, such as the ARM TrustZone.

TrustZone employs a similar two-project approach as Intel SGX, along with a gateway description

header file similar to the .edl file used in the SGX SDK. An important point to note here is that

while the high-level API and programming model can be easily translated, considerable effort is

required to port the GHC runtime to the TrustZone infrastructure.

4 DESIGN AND IMPLEMENTATION OF HASTEE
This section first outlines the high-level design and semantics of the HasTEE library. Later in this

section, we will describe the internal implementation details of the library.

4.1 Threat Model
We begin by discussing the threat model of the HasTEE library. HasTEE has the very same threat

model as that of Intel SGX. In this model, only the software running inside the enclave memory

is trusted. All other application and system software, such as the operating system, hypervisors,

driver firmware, etc., are considered compromised by an attacker. A very similar threat model is

shared by a number of other work based on Intel SGX [Arnautov et al. 2016; Baumann et al. 2015;

Ghosn et al. 2019; Lind et al. 2017].

In this work, we enhance the application-level security firstly by using a memory-safe language,

Haskell, and secondly by introducing information flow control via the Enclave monad. Our imple-

mentation strategy of loading the GHC runtime on the enclave allows us to handle Iago attacks

[Checkoway and Shacham 2013] (see Section 4.4.1). We trust the underlying implementation of the

SGX hardware and software stack (such as tlibc) as provided by Intel. Known limitations of Intel

SGX such as denial-of-service attacks and side-channel attacks [Schaik et al. 2022] are beyond the

scope of this paper.

An ideally secure development process should include auditing the code running on the enclave

either through static analyses or manual code reviews or both. The conciseness of Haskell codebases

should generally facilitate the auditing process. However, the mechanisms for fail-proof audits are

beyond the scope of this paper as well.

4.2 HasTEE API
We show the core API of the HasTEE library in Fig 5. The functions presented operate over three

principal Haskell data types: (1) Enclave, (2) Client, and (3) App. All three types are instances of
the Monad typeclass, which allows for the use of do notation when programming with them. One of

the key differences in functionality provided by the Client and Enclave monads is the restriction

on arbitrary IO actions enforced by the Enclave monad. The App monad sets up the infrastructure

for communication between the Client and Enclave monad. We show a simple secure counter

example written using most of the API in Listing 2.

Listing 2 internally gets partitioned into the trusted and untrusted components via conditional

compilation. In line 3, liftNewRef is used to create a secure reference initialised to the value 0.

Followed by that, the computation to increment this value inside the enclave is given in lines 4 -

7. Applying secure on the enclave computation (line 4) yields the type App (Secure (Enclave

, Vol. 1, No. 1, Article . Publication date: March 2023.



344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Anon.

-- mutable references
liftNewRef :: a → App (Enclave (Ref a))
readRef :: Ref a → Enclave a
writeRef :: Ref a → a → Enclave ()

-- get a reference to call a function inside the enclave
secure :: Securable a ⇒ a → App (Secure a)

-- runs the Client monad
runClient :: Client () → App Done

-- used for function application on the enclave
onEnclave :: Binary a ⇒ Secure (Enclave a) → Client a
(<.>) :: Binary a ⇒ Secure (a → b) → a → Secure b

-- call this from `main` to run the App monad
runApp :: App a → IO a

Fig. 5. The core HasTEE API

1 app :: App Done

2 app = do

3 enclaveRef <- liftNewRef 0 :: App (Enclave (Ref Int))

4 count <- secure $ do

5 r <- enclaveRef

6 v <- readRef r

7 writeRef r (v + 1) >> return v :: Enclave Int

8 runClient $ onEnclave count >>= (\v -> liftIO $ print $ "Counter 's #" ++ show v)

9

10 main = runApp app

Listing 2. A secure counter written in HasTEE (types annotated for clarity)

Int)). The Secure type is an internal representation used by HasTEE to represent a closure that

is present in the enclave memory. Line 8 uses the critical onEnclave function to actually execute

the enclave computation within the enclave memory and get the result back in the client memory.

This resulting value, v, is displayed to the user.

The only function from Fig. 5 not used in Listing 2 is the <.> operator, used to collect arguments

that are sent to the enclave. For example, an enclave function, f, that accepts two arguments, arg1
and arg2, would be executed as onEnclave (f <.> arg1 <.> arg2). Listing 1 in Section 1 shows

a concrete usage of the operator. We have larger case studies in Section 5.

4.3 Operational Semantics of HasTEE
In this section, we provide a big-step operational semantics of the core functionalities within the

HasTEE library. We present the operational semantics through the use of an evaluator (interpreter)

for the core operators of HasTEE, which intends to show how the client and enclave memory

evolve as a program executes. We show our expression language and the abstract machine values to

which we evaluate below:
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type Name = String

data Exp = Lit Int | Var Name | Fun [Name] Exp | App Exp [Exp]
| Let Name Exp Exp | Plus Exp Exp
-- HasTEE operators
| Secure Exp | OnEnclave Exp | EnclaveApp Exp Exp -- (<.>)

data Value = IntVal Int | Closure [Name] Exp Env
-- HasTEE values
| SecureClosure Name [Value] | ArgList [Value] | Dummy
-- Error values
| Err ErrState

The Exp language above is a slightly modified version of lambda calculus with the restriction of

allowing only fully applied function application. This restriction is done to reflect the nature of the

HasTEE API, which through the type system, only permits fully saturated function application for

functions residing in the enclave. The lambda calculus language is then extended with the core

HasTEE operators.

In the Value type, the Closure constructor represents a very standard approach to capture

closures. Owing to saturated function application, it captures a list of variable names rather than a

single name. Notable in the Value type is the SecureClosure constructor that represents a closure
residing in the enclavememory. This constructor does not capture the body of the closure as the body

could hold any hidden state that lies protected within the enclave memory. The SecureClosure
value is used by the onEnclave function to invoke functions residing in the enclave.

The ArgList constructor, as the name suggests, collects the arguments that are to be sent over

to the enclave. The <.> operator, when applied to various arguments, builds up this list. Lastly,

the Dummy value is used as a placeholder for operators that do not have any semantics depending

on the client or the enclave memory. For instance, the onEnclave function has no meaning inside

the Enclave monad, it is only usable from the Client monad. The Dummy value is an important

value type that enables the conditional compilation trick in HasTEE by acting as a placeholder for

meaningless functions in the respective client and enclave memory.

The evaluator operates on an environment that maps variable names to values. As there are two

distinct memories here - the enclave memory and the client memory, we have two environments.

type ClientEnv = [(Name, Value)]
type EnclaveEnv = [(Name, Value)]

Interestingly, the conditional compilation of HasTEE requires us to define an evaluator that

operates in two passes. In the first pass, it runs a program and loads up the necessary elements

in the enclave memory and then in the second pass, the loaded enclave memory is additionally

passed to the client’s evaluator. The following demonstrates this:

eval :: Exp -> Value
eval e =
let newEnclaveEnv = snd $ evalState (evalEnclave e initEnclaveEnv)

(initStateVar initEnclaveEnv)
in fst $ evalState (evalClient e initClientEnv) (initStateVar newEnclaveEnv)
where

initEnclaveEnv = []
initClientEnv = []

data StateVar = StateVar { varName :: Int, encState :: EnclaveEnv }

initStateVar :: EnclaveEnv -> StateVar
initStateVar = StateVar 0
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The StateVar type exists to generate variable names and to hold the enclave environment when

the evaluator for the client is run. The evalEnclave and evalClient functions are presented in

Fig 6 and Fig. 7, respectively. The type signature of both the functions are similar and they represent

the change in state of the respective environments as a term of the Exp language is evaluated.

Two helper functions, genEncVar and evalList are not shown for concision. The first one is a

standard function for generating unique variable names using the Int held by the StateVar type.

The evalList function is effectively a fold function over a list of expressions using the respective

evaluators. Appendix A contains the complete, executable semantics written in Haskell.

1 evalEnclave :: (MonadState StateVar m)
2 ⇒ Exp → EnclaveEnv → m (Value, EnclaveEnv)
3 evalEnclave (Lit n) env = pure (IntVal n, env)
4 evalEnclave (Var x) env = pure (lookupVar x env, env)
5 evalEnclave (Fun xs e) env =
6 pure (Closure xs e env, env)
7 evalEnclave (Let name e1 e2) env = do
8 (e1', env') ← evalEnclave e1 env
9 evalEnclave e2 ((name,e1'):env')
10 evalEnclave (App f args) env = do
11 (v1, env1) ← evalEnclave f env
12 (vals, env2) ← evalList args env1 []
13 case v1 of
14 Closure xs body ev →
15 evalEnclave body ((zip xs vals) ++ ev)
16 _ → pure (Err ENotClosure, env2)
17 evalEnclave (Plus e1 e2) env = do
18 (v1, env1) ← evalEnclave e1 env
19 (v2, env2) ← evalEnclave e2 env1
20 case (v1, v2) of
21 (IntVal a1, IntVal a2) → pure (IntVal (a1 + a2), env2)
22 _ → pure (Err ENotIntLit, env2)
23 evalEnclave (Secure e) env = do
24 (val, env') ← evalEnclave e env
25 varname ← genEncVar
26 let env'' = (varname, val):env'
27 pure (Dummy, env'')
28 -- the following two are essentially no-ops
29 evalEnclave (OnEnclave e) env = evalEnclave e env
30 evalEnclave (EnclaveApp e1 e2) env = do
31 (_, env1) ← evalEnclave e1 env
32 (_, env2) ← evalEnclave e2 env1
33 pure (Dummy, env2)

Fig. 6. Operational Semantics of the Enclave

We demonstrate the semantics by examining a simple example program (Listing 3) written in the

above expression language and discuss the differences between the client and enclave memories

for this program.

Our semantic evaluator operates in two passes. In the first pass, the evalEnclave evaluator from
Fig. 6 is run. Fig. 8a shows the state of the enclave environment after the evaluator has completed

evaluating Listing 3. Notably, the variable y maps to a value with no semantic meaning, as the

evaluator is already running in the secure memory.
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1 evalClient :: (MonadState StateVar m)
2 ⇒ Exp → ClientEnv → m (Value, ClientEnv)
3

4 {- evalClient for Lit, Var, Fun, Let, App, Plus not shown as
5 they have the identical semantics as evalEnclave above -}
6

7 evalClient (Secure e) env = do
8 (_, env') ← evalClient e env
9 varname ← genEncVar
10 let env'' = (varname, Dummy):env'
11 pure (SecureClosure varname [], env'')
12 evalClient (OnEnclave e) env = do
13 (e', env1) ← evalClient e env
14 case e' of
15 SecureClosure varname vals → do
16 enclaveEnv ← gets encState
17 let func = lookupVar varname enclaveEnv
18 case func of
19 Closure vars body encEnv → do
20 (res,enclaveEnv') ←
21 evalEnclave body ((zip vars vals) ++ encEnv)
22 pure (res, env1)
23 _ → pure (Err ENotClosure, env1)
24 _ → pure (Err ENotSecClos, env1)
25 evalClient (EnclaveApp e1 e2) env = do
26 (v1, env1) ← evalClient e1 env
27 (v2, env2) ← evalClient e2 env1
28 case v1 of
29 SecureClosure f args →
30 case v2 of
31 ArgList vals → pure (SecureClosure f (args ++ vals), env2)
32 v → pure (SecureClosure f (args ++ [v]), env2)
33 v → pure (ArgList [v,v2], env2)

Fig. 7. Operational Semantics of the Client

1 testProgram = let m = 3 in

2 let f = 𝜆 x -> x + m in

3 let y = secure f in

4 onEnclave (y <.> 2)

Listing 3. A simple program for illustrating the operational semantics of HasTEE

In the second pass, the environment from Fig. 8a is additionally passed as a state variable to the

evaluator evalClient from Fig. 7. Line 3 creates a different mapping from the enclave evaluator

when evaluating the client, as shown in Fig 8b. The <.> operator is evaluated as the EnclaveApp
constructor on lines 25-33 in Fig 7. It collects the arguments to generate SecureClosure "𝐸𝑛𝑐𝑉𝑎𝑟0"
[Lit 2].

The most significant part of Listing 3 occurs on line 4 when the client evaluates the onEnclave
call. The semantics for this evaluation can be found in lines 12-24 of Fig 7. The evaluator finds a

reference 𝐸𝑛𝑐𝑉𝑎𝑟0 with no semantics in the client memory (as shown in Fig 8b). The evaluator
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𝑚 ↦−→ 3

𝑓 ↦−→ 𝐶𝑙𝑜𝑠𝑢𝑟𝑒 [”𝑥”] (𝑥 +𝑚) [𝑚 ↦→ 3]
𝐸𝑛𝑐𝑉𝑎𝑟0 ↦−→ 𝐶𝑙𝑜𝑠𝑢𝑟𝑒 [”𝑥”] (𝑥 +𝑚) [𝑚 ↦→ 3]

𝑦 ↦−→ 𝐷𝑢𝑚𝑚𝑦

(a) Enclave Environment

𝑚 ↦−→ 3

𝑓 ↦−→ 𝐶𝑙𝑜𝑠𝑢𝑟𝑒 [”𝑥”] (𝑥 +𝑚) [𝑚 ↦→ 3]
𝐸𝑛𝑐𝑉𝑎𝑟0 ↦−→ 𝐷𝑢𝑚𝑚𝑦

𝑦 ↦−→ 𝑆𝑒𝑐𝑢𝑟𝑒𝐶𝑙𝑜𝑠𝑢𝑟𝑒 ”𝐸𝑛𝑐𝑉𝑎𝑟0” []

(b) Client Environment

Fig. 8. The Enclave Environment in (a) is loaded during the first pass of the evaluator, and the Client
Environment is empty during this pass. In the second pass, the Client Environment (b) gets loaded while
having access to the memory (a), as can be seen in Fig 7

then looks up the variable in the enclave environment (Fig 8a) and finds a Closure with a body.

Crucially, it evaluates the Closure by invoking the evalEnclave function on line 21 of Fig. 7
using the enclave environment. This part models how the SGX hardware switches to the enclave

memory when executing the secure function f rather than the client memory. An important point

is generating an identical fresh variable name, 𝐸𝑛𝑐𝑉𝑎𝑟0, that the client uses to identify and call the

functions in the enclave memory.

4.4 HasTEE implementation
We now discuss the implementation details required to support HasTEE.

4.4.1 Trusted GHC Runtime. One of the crucial challenges in implementing the HasTEE library is

enabling Haskell programs to run within an Intel SGX enclave. As already discussed in Section 3,

all Haskell programs compiled via the Glasgow Haskell Compiler (GHC), rely on the GHC runtime

[Marlow et al. 2009] for crucial operations such asmemory allocation andmanagement, concurrency,

I/O management, etc. As such, it is essential to port the GHC runtime in order to run Haskell

programs on the enclave.

The GHC runtime is a complex software that is heavily optimized for specific platforms, such as

Linux and Windows, to maximize its performance. For instance, on Linux, the runtime relies on a

wide variety of specialised low-level routines from a C standard library, such as glibc [GNUDevs

1991] or musl [Felker 2005], to provide essential facilities like memory allocation, concurrency, and

more. The challenge lies in porting the runtime due to the limited and constrained implementation

of the C standard library in the SGX SDK, called tlibc [Intel 2018b]. Specifically, tlibc does not

support some of the essential APIs required by the GHC runtime, including mmap, madvise, munmap,
select, poll, a number of pthread APIs, operations related to timers, file reading, writing, and

access control, and other functionalities that add up to 100+ functions.

Given the magnitude of engineering effort required to port the GHC runtime, we fall back on

a library OS called Gramine [C. Tsai, Porter, et al. 2017]. Gramine internally intercepts all libc
system calls within an application binary and maps them to a Platform Abstraction Layer (PAL)

that utilizes a smaller ABI. In Gramine’s case, this amounts to only 40 system calls that are executed

through dynamic loading and runtime linking of a larger libc library, such as glibc or musl.
Importantly, to protect the confidentiality and integrity of the enclave environment, Gramine uses a

concept known as shielded execution, pioneered by the Haven system [Baumann et al. 2015], where

a library is only loaded if its hash values are checked against a measurement taken at the time of

initialisation. Shielded execution further protects applications against Iago attacks [Checkoway
and Shacham 2013] in Gramine.
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However, there are additional difficulties in loading the GHC runtime on the SGX enclave via

Gramine. Owing to Gramine’s diminished system ABI, it has a dummy or incomplete implemen-

tation for several important system calls that the runtime requires. For instance, the absence of

the select, pselect, and poll functions, which are used in the GHC IO manager, required us to

modify the GHC I/O manager to manually manage the polling behavior through experimental

heuristics. Similarly, the critical mmap operation in GHC uses specific flags (MAP_ANONYMOUS) that
require modification. In addition, other calls, such as madvise, getrusage, and timer-based system

calls, also require patching. We hope to quantify these modifications’ performance in the future.

After the GHC runtime is loaded onto an enclave, communication between the untrusted and

trusted parts of the application effectively occurs between two disjoint address spaces. Commu-

nication between them can happen over any binary interface, emulating a remote procedure call.

As our implementation is in its early prototype stage, we transmit serialised data as TCP packets

(Fig 9). A production implementation should communicate via the C ABI using the Foreign Function

Interface (FFI) supported by Haskell.

Fig. 9. The high-level overview of communication between the untrusted and trusted parts of the app

The Gramine approach results in an increase of 57,000 lines of code in the Trusted Computing

Base (TCB) [C. Tsai, Porter, et al. 2017]. However, this is still an improvement over traditional

operating systems, like Linux, with a TCB size of 27.8 million lines of code [Larabel 2020].

4.4.2 HasTEE Library. The API of the HasTEE library was already shown (Figure 5) and discussed

in Section 4.2. The principal data types, Enclave and Client, have been implemented as wrappers

around the IO monad, as shown below:

1 newtype Enclave a = Enclave (IO a) -- data constructor not exported

2 type Client = IO

A key distinction is that the Enclave data type does not instantiate the MonadIO typeclass, as a

result of which arbitrary IO actions cannot be lifted inside the Enclave monad.However, it does

instantiate a RestrictedIO typeclass that will be discussed in the following section. The conditional-
compilation-based partitioning technique is achieved by having dummy implementations of certain

data types in one of the modules, while the concrete implementation of those types is defined in

the second module. We give an example of this using two different data types from the API.

1 -- Enclave.hs

2 data Secure a = SecureDummy

3

4 type Ref a = IORef a

1 -- Client.hs

2 data Secure a =

3 Secure CallID [ByteString]

4 type Ref a = RefDummy

A notable aspect of the API is the Securable typeclass, which constrains the secure function
and enables it to label functions with any number of arguments as residents of the enclave memory.

The Securable typeclass accomplishes this using a well-known typeclass trick in Haskell, used to

represent statically-typed variadic functions such as printf [Augustsson and Massey 2013].
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The operational semantics presented in Section 4.3 should provide an intuition for the core

implementation techniques used in the library. The actual Haskell code of the HasTEE library has

been open-sourced
1
. Additionally, the Haste.App paper [Ekblad and Claessen 2014] provides more

details on the techniques used.

4.5 Information Flow Control for Enclaves
The HasTEE library, being written in Haskell, allows using language-based Information Flow

Control (IFC) techniques available in Haskell [Russo et al. 2008]. IFC approaches in Haskell aim to

protect the confidentiality of data by encapsulating computations within a Sec monad. Typically,

the monad employs a lattice of labels [Denning 1976] to model various security levels and then

enforces policies on how data can flow between the levels. For a two-label lattice, where confidential

data is marked with H and public data with L, a security policy known as non-interference is to
prevent information flow from the secret to public channels [Goguen and Meseguer 1982]. In other

words, 𝐿 ⊑ 𝐿, 𝐻 ⊑ 𝐻 , 𝐿 ⊑ 𝐻 , but 𝐻 @ 𝐿, where ⊑ indicates the flows to relation.
A similar scenario arises in HasTEE, where the Enclave monad can be compared to a security-

critical Sec H monad that attempts to prevent information leakage to a public Sec L channel

represented by the Client monad. Enforcing the non-interference policy in this scenario would

imply that no data can flow out of the Enclavemonad to the Client, which would make the enclave

very restrictive for any real-world use cases. As such, the IFC literature relaxes the non-interference

policy by the means of declassification [Sabelfeld and Sands 2005], which allows controlled leak of

data from H to L.
In the HasTEE API, the onEnclave :: (Binary a) => Secure (Enclave a) -> (Client a)

function is an escape hatch [Hedin and Sabelfeld 2012] that allows the enclave to leak any data to

the client. We prioritise the usability of the API and trust that the enclave programmer will make

the onEnclave call when they are certain they want to intentionally leak information to a public

channel. However, there is a hidden line of defence in the onEnclave function. If the programmer

intends to transmit any user-defined data type to the untrusted client, they are required to provide

an instance of the Binary typeclass. Writing this typeclass instance for some confidential data type,

such as a private key, equips the confidential data with the capacity to leave the enclave boundary,

which should be done in a highly controlled manner.

Besides the onEnclave function, the Enclavemonad has occasional requirements to interact with

general I/O facilities like file reading/writing or random number generation. For such operations,

the Enclave monad would need a MonadIO instance in Haskell to perform any I/O operations.

However, as discussed in the previous section, we do not provide the lenient MonadIO instance to
the Enclave monad but instead, use a RestrictedIO typeclass to limit the types of I/O operations

that an Enclave monad can do.

4.5.1 Restricted IO. RestrictedIO, shown in Listing 4, is a collection of typeclasses that constrains
the variants of I/O operations possible inside an Enclave monad. For instance, if a programmer,

through the usage of a malicious library, mistakenly attempts to leak confidential data through a

network call, the typeclass would not allow this.

1 type RestrictedIO m = (EntropyIO m, UnsafeFileIO m) -- other typeclasses not shown

2

3 class EntropyIO (m :: Type -> Type) where

4 type Entropy m:: Type

5 genEntropyPool :: m (Entropy m)

6

1
github link hidden for the review process
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7 class UnsafeFileIO (m :: Type -> Type) where

8 untrustedReadFile :: FilePath -> m (Untrusted String)

Listing 4. The Restricted IO typeclass

This approach is invasive in that it restricts how a library (malicious or otherwise) that interacts

with a HasTEE program conducts I/O operations. For instance, we had to modify the HsPaillier

library [L.-T. Tsai and Sarkar 2016] that used the genEntropy function for random number gener-

ation. Initially, the library could use the Haskell IO monad freely, but to interact with a package

written in HasTEE, it had to be modified to use the more restricted type class constraint (EntropyIO)
for its effectful operations. This limits potential malicious behaviour within the library. Notably,

our changes involve only five lines of code that instantiate the type class and generalize the type

signature of effectful operations.

Another aspect of IFC captured in our system is the notion of endorsement [Hedin and Sabelfeld

2012], which is essentially the dual of declassification. Endorsement is concerned with the integrity,

i.e., trustworthiness, of information. In our scenario, we utilize endorsement to ensure that the

integrity of secrets is not compromised by data being introduced into the enclave.

HasTEE allows file reading operations inside the Enclave monad, which can potentially corrupt

the enclave’s data integrity. To control this, HasTEE provides two forms of file reading operation -

(1) untrusted file read and (2) trusted encrypted file reads. For (1), data can be read from untrusted

files but the enclave programmer is required to manually endorse the untrusted data read using the

trust operator. This provides an additional check before untrusted data interacts with the trusted

domain. The types involved are shown below:

1 data Untrusted a -- | A wrapper over untrusted data

2

3 -- | Indicate trust in a potentially untrusted value

4 trust :: Untrusted a -> a

For point (2), HasTEE relies on an Intel SGX feature known as sealing. Every Intel SGX chip is

embedded with a unique 128 bit key known as the Root Seal Key (RSK). The SGX enclave can use

this RSK to encrypt trusted data that it wishes to persist on untrusted media. This process is known

as sealing, and HasTEE provides a simple interface to seal as well as unseal the trusted data being

persisted. The API is shown below:

1 data SecurePath = SecurePath String

2

3 securefile :: FilePath -> SecurePath

4 securefile fp = "/secure_location/" <> fp -- this path is hidden from the user

5

6 readSecure :: SecurePath -> Enclave String

7 writeSecure :: SecurePath -> String -> Enclave ()

In the above, the writeSecure operation corresponds to ciphertext declassification [Askarov et al.
2008], while readSecure to an operation that applies automatic endorsement if the file can be

decrypted successfully by the enclave RSK. If an attacker were to locate the secure location, the

worst possible outcome would be the deletion of the file. However, the contents of the file cannot

be read or modified outside the enclave, so the attacker would not be able to access the sensitive

information stored within.

5 CASE STUDIES
In this section, we will demonstrate how HasTEE can be used to enforce data confidentiality using

three case studies spread across a variety of domains.
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5.1 Federated Learning
Federated Learning is an emerging privacy-preserving machine learning [Al-Rubaie and Chang

2019] approach that allows multiple parties to train a model without sharing the raw training

data. A typical federated learning setup involves multiple decentralized edge devices holding local

datasets, training a model locally and then aggregating the trained model on a cloud server. Fig. 10

shows the desired setup.

Fig. 10. A Federated Learning setup where the data owners are protecting their data and the ML model owner
is protecting their model. The training with encrypted weights can be done using homomorphic encryption.

The setup in Fig. 10 above is facilitated by a combination of TEEs and homomorphic encryption.

Homomorphic Encryption (HE) [Gentry 2009] is a form of encryption that enables direct computa-

tion on encrypted data, revealing the computation result only to the decryption key owner. We

emulate the very same setup for our case study where we have two mutually distrusting parties -

(1) Confidential data owner: The data owner could, for instance, be a hospital that does not

want to send confidential patient data to an untrusted cloud server. They additionally want

to protect their private data from other participants. The training process is conducted on a

data owner’s machine locally and only the encrypted weights are transferred between the

cloud server and data owner so that the data privacy of the model is protected.

(2) MLmodel owner: TheMLmodel ownerwants to protect their model as it could be considered

their intellectual property. They want the model to remain confidential in both the client

machines where the training occurs, as well as from the cloud server, which may be an

untrusted multi-tenant virtual machine. Weights from each data owner are aggregated

and updated in an enclave of the cloud server before being sent back to the data owner.

Although the model owner has the private key of HE, it has no chance to speculate on the

data owners’ private data from the weights.

The above setup only requires the cloud server supporting Intel SGX technology so that even

mobile devices can participate in training as a worker role. We can very conveniently model this

entire setup as three clients and a server with an enclave in HasTEE. For illustration purposes, we

will use GHC’s threads to represent the three clients instead of three separate data owner machines.

The server’s state is modelled in Listing 5. Note that the state keeps the weights in plaintext form.

The enclave state holds both its public and private keys. However, only the public key should be

, Vol. 1, No. 1, Article . Publication date: March 2023.



785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

HasTEE - Confidential Computing on Trusted Execution Environments with Haskell 17

1 data SrvSt = SrvSt { publicKey :: PubKey , privateKey :: PrvKey

2 , updWts :: Vector Double , numClients :: Int

3 , wtsDict :: Map -- (key=Epoch , value=[ Vector CipherText ]) }

Listing 5. The Federated Learning server state

allowed to move to the client. We enforce this by not providing an instance of the Binary typeclass
for the private key. As discussed in Section 4.5, the lack of a Binary instance for the privateKey
will prevent the enclave programmer from accidentally leaking the security-critical private key.

Listing 6 shows the API exposed to the client machine. Instead of the complex SGX_ECALL
machinery, our API is expressed in idiomatic Haskell. Calling any function f from the record api
with an argument arg in this API is expressed simply as onEnclave ((f api) <.> arg).

1 type Accuracy = Double

2 type Loss = Double

3 data API = API { aggregateModel :: Secure (Epoch -> Vector CipherText

4 -> Enclave (Maybe (Vector CipherText)))

5 , validateModel :: Secure (Enclave (Accuracy , Loss))

6 , getPublicKey :: Secure (Enclave PubKey)

7 , reEncrypt :: Secure (CipherText -> Enclave CipherText)}

Listing 6. The Federated Learning client API

We also show the main machine learning loop running on the data owner’s machine in Listing 7.

A number of important functions have been elided for brevity, but the key portions of the client-

server interaction in HasTEE should be visible. The Config type holds the encrypted weights sent

from the cloud server and after each epoch updates to the new aggregated value (Line 13). The value

x’ is the data set that the data owners are protecting and y is the result of the learning algorithm.

The adjustModelWithLearningRate function (body elided, line 8) takes the computed gradient

(line 7) and tries to converge on the desired result.

The client-server communication happens in both lines 9 and 10. On line 9 the server is commu-

nicated to aggregate models spread across different clients, with the server returning the encrypted

updated weights wt’. We use a wrapper over onEnclave, called retryOnEnclave (body elided),

that functionally allows the server to move in lock step with all the clients. Then in line 10, the

server is communicated again to collect the accuracy and loss in the ongoing epoch number, which

gets displayed in line 11. Finally, the loop continues in line 13.

1 handleSingleEpoch :: API -> CurrentEpochNum -> MaxEpochNum -> Matrix Double

2 -> Vector Int -> Config -> Client Config

3 {- The Config type is a record that stores configuration info such as the learning

rate , the current epoch number , encrypted weights and the public key -}

4 handleSingleEpoch api n m x' y cfg '

5 | n == m = return cfg '

6 | otherwise = do

7 grad <- computeGradient api cfg ' x' y

8 cfgNew <- adjustModelWithLearningRate api (cfg ' { iterN = n }) grad

9 wt' <- retryOnEnclave $ (aggregateModel api) <.> n <.> (weights cfgNew)

10 (acc , loss) <- onEnclave (validateModel api)

11 printClient $ " Iteration no: " <> show n <> " Accuracy: " <> show acc

12 <> " Loss : " <> show loss

13 handleSingleEpoch api (n+1) m x' y (cfgNew { weights = wt ' })

Listing 7. The key machine learning loop; a number of functions have been elided for brevity
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Listing 7 above features a complex control flow with at least two interactions visible in the

loop itself. Internally, both the computeGradient as well as adjustModelWithLearning functions
also talk to the enclave, calling the reEncrypt function to remove noise from the homomorphic

encryption operation. HasTEE can represent a fairly complex, asynchronous control flow as simple

Haskell function calls.

In terms of Information Flow Control, there are two important aspects in this case study. Firstly,

the RestrictedIO typeclass constrains potentially malicious libraries from misbehaving. For

example, consider the library HsPaillier [L.-T. Tsai and Sarkar 2016], which implements the Paillier

Cryptosystem [Paillier 1999] for partial homomorphic encryption. All effectful operations from

this library, such as genKey :: Int -> IO (PubKey, PrvKey), need to be rewritten for them to

be usable within the Enclave monad. The following snippet shows our typeclass instantiation and

a sample type signature change needed inside the library.

1 instance (IO ~ m) => EntropyIO m where

2 type Entropy m = EntropyPool

3 genEntropyPool = createEntropyPool

4

5 -- genKey :: Int -> IO (PubKey , PrvKey) -- original type

6 genKey :: (Monad m, EntropyIO m) => Int -> m (PubKey , PrvKey)

The second aspect of IFC arises when the client machine queries the server for accuracy and

loss by asking it to validate the model. Internally, when this call is made to the server equipped

with the enclave, the enclave has to read a file with test data. This test data resides outside of the

enclave and is potentially an attack vector. In order to not inadvertently trust such an exposed

source, the enclave uses the untrustedReadFile function from the RestrictedIO typeclass. The

file is marked as Untrusted and requires explicit programmer endorsement via the trust operator

as shown below. The compiler will not typecheck if the user does not trust the file source.

1 validate :: Enclave (Ref SrvSt) -> Enclave (Accuracy , Loss)

2 validate srv_ref_st = do

3 -- ...

4 testDataSet <- untrustedReadFile testfile

5 let (x, y) = parseDataSet $ trust testDataSet -- trust the contents

6 -- ...

7 return (acc , loss)

Overall the case study constitutes only 500 lines of code. It naturally fits into the client-server

programming model, and the usage of Haskell provides type safety and enables IFC-based security.

5.2 Encrypted Password Wallet
For this case study, we use HasTEE to implement a secure password wallet that stores authentication

tokens in encrypted form on the disk. An authentication token can be retrieved from the wallet if

the right master password is supplied. The definition of a password wallet used by the case study

follows in Listing 8.

The Show and Read instances are used to convert a wallet to and from a string. This allows us

to write the wallet to disk, and by writing to a secure file path we ensure that the stored wallet is

encrypted, as described in section 4.5.1. By omitting a Binary instance we ensure that the wallet
is not inadvertently leaked to the client directly. The code in Listing 9 implements the functions

that store and load the wallet. We emphasize that the code does not need to explicitly reason about

encryption and decryption, except for defining the secure file path.
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1 -- | A single entry of authentication tokens

2 data Item = Item { title :: String , username :: String , password :: Password }

3 deriving (Show , Read)

4

5 -- | The secure wallet

6 data Wallet = Wallet { items :: [Item], size :: Int , masterPassword :: Password}

7 deriving (Show , Read)

Listing 8. The definition of a password wallet as a regular Haskell data type.

1 -- | Secure file path to the wallet

2 wallet :: SecureFilePath

3 wallet = secureFile "wallet.seal"

4

5 -- | Try to load the secure wallet into the enclave

6 loadWallet :: Enclave (Maybe Wallet)

7 loadWallet = do b <- doesSecureFileExist wallet

8 if b then do contents <- readSecure wallet

9 return $ readMaybe contents

10 else return Nothing

11

12 -- | Store the wallet on disk in encrypted form

13 saveWallet :: Wallet -> Enclave ReturnCode

14 saveWallet w = writeSecure wallet (show w) >> return Success

Listing 9. The code that stores the wallet in encrypted form, and loads it up into the enclave memory. The
only part of this code that indicates that encryption & decryption are taking place is the fact that we use a
secure filepath. The programmer is relieved from dealing with encryption keys.

Our password wallet has the following features - (1) adding an authentication token, (2) retrieving

a password, (3) deleting a token and (4) changing the master password. It is designed as a command-

line utility where the commands are handled by an untrusted client and the passwords are protected

by the enclave. The complete implementation is roughly 200 lines of Haskell code.

The hardware-enforced security provided by our secure wallet makes it a natural fit for designing

password wallets that are protected by biometrics. A similar approach is used on modern iPhones,

where passwords are stored in a secure enclave [Apple 2021] to ensure confidentiality, and the

user’s biometric data is used as the master password. In our case, the usage of a high-level language

like Haskell enables expressing this relatively complex application concisely.

5.3 Data Clean Room with Differential Privacy
A Data Clean Room (DCR) [AWS 2022] is a technology that provides aggregated and anonymised

user information to protect user privacy while providing advertisers and analytic firms with non-

personally identifiable information to target a specific demographic with advertising campaigns

and analytics-based services.

A DCR can be provisioned with user data, but very strict privacy controls ensure that user data

does not leave the DCR. The DCR can, however, compute aggregated results based on the user

data within, and release that. The DCR can further employ differential privacy [Dwork 2006] as a

security guarantee. Differential privacy is a guarantee that states that a query over a data set does

not produce a result that makes it possible to say whether a specific individual was in the data set
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or not. This is done by adding a calibrated amount of noise to the result. The amount of noise can

be calibrated to increase privacy (add more noise) or increase accuracy (add less noise).

Our third case study implements a DCR within an SGX enclave using HasTEE. To protect user

confidentiality, the analytics applied in the DCR use basic differential privacy techniques (written

in Haskell). User records are encrypted before they are provisioned to the DCR, after which we

use the Laplace Mechanism [Dwork and Roth 2014] when performing counting queries to add

noise to the result. The mechanism introduces noise by sampling a Laplace distribution. The code

implementing the Laplace mechanism can be found in the appendix, in Listing 14. The definition of

user records is shown in Listing 10.

1 data User = User { name :: String , occupation :: Occupation , salary :: Integer

2 , gender :: Gender , age :: Integer , origin :: Country

3 } deriving (Show , Read)

4 -- | The client can encrypt a user

5 encryptUser :: User -> PubKey -> Client [CipherText]

6 -- | The enclave can decrypt a user

7 decryptUser :: [CipherText] -> PrvKey -> PubKey -> Enclave (Maybe User)

Listing 10. Definition of user records that are recorded in the enclave. User records should only enter the
enclave in encrypted form, so we expose two functions for encrypting and decrypting a user record.

The DCR does not provide a Binary instance for the User type to ensure that the user records

are not transferred to the enclave via plain serialisation. Instead, we expose functions that encrypt

and decrypt users. The [CipherText] type has a Binary instance, allowing for an encrypted user

to be sent to the enclave.

The Laplace Mechanism used for adding noise requires a source of randomness. In our imple-

mentation, we use Haskell’s System.Random package, which internally reads from /dev/urandom.
Although the /dev/urandom file is located outside of the enclave, the Gramine library OS intercepts

the application’s read calls to /dev/urandom, and instead of reading from the file directly, it samples

randomness from a secure source within the enclave. This secure source of randomness can be

accessed through the RestrictedIO (4.5.1) typeclass.
An example query that one might want to run over the data set is to see how many individuals

in the data set have a salary in a specific range. Constructing the query that answers this for a

single individual is shown in Listing 11.

1 salaryWithin :: Integer -> Integer -> User -> Bool

2 salaryWithin l h u = l <= salary u && salary u <= h

Listing 11. A query that checks whether an individual has a salary within a certain bound.

The HasTEE code that implements the main method of this example is shown in listing 12. Lines

3 to 8 specify the API of the data clean room. The DCR’s API supports (1) initialisation, (2) fetching

of the public key, (3) provisioning user data to the enclave, and (4) executing the salary query.

Line 8 is used to generate some arbitrary users (for testing), after which the client code takes over.

The client initializes the DCR and fetches its public key. After this, the users are encrypted and

sent to the DCR. On line 15 the salary query is executed in the DCR, and then the result is printed.

Generating arbitrary users to test the setup is done purely for illustration purposes. In a more

faithful implementation, the client would relay the public key to data owners that would then

send already encrypted user records to the client, which provisions them to the DCR. Owing to

HasTEE’s client-server programming model and the use of a high-level language like Haskell, the

implementation becomes very compact with roughly 200 LOC.
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1 app :: App Done

2 app = do

3 ref <- liftNewRef undefined

4 initSt <- secure $ initEnclave ref

5 pkey <- secure $ getPublicKey ref

6 prov ' <- secure $ provisionUserEnclave ref

7 lm <- secure $ laplaceMechanism ref $ salaryWithin 10000 50000

8 dataset <- liftIO $ sequence $ replicate 500 (generate arbitrary)

9 runClient $ do

10 onEnclave $ initSt <.> 0.1 -- initialize enclave with privacy budget

11 key <- onEnclave pkey -- fetch public key

12 mapM_ (\u -> do ct <- encryptUser u key

13 onEnclave $ prov ' <.> ct) dataset -- provision users

14 result <- onEnclave lm -- run the salary query

15 liftIO $ putStrLn $ concat ["randomized response: ", show result]

Listing 12. The client running the salaryWithin query over the data set in the clean room.

6 EVALUATION
6.1 Discussion
Through the case studies presented in Section 5, we have demonstrated the applicability of HasTEE

in a variety of domains, including privacy-preserving machine learning, hardware-encrypted

wallets, and data clean rooms with differential privacy. In all of the case studies shown above, we

rely on a particular TEE implementation - Intel SGX.

Considering the shortcomings of SGX, it has been shown to be vulnerable to a wide variety of

side-channel attacks [Schaik et al. 2022]. HasTEE’s API and implementation, however, are much

more high-level and are not reliant on anything SGX-specific. A TEE design, such as ARMTrustZone,

which provides a disjoint cache hierarchy, could alleviate several side-channel attacks affecting

Intel SGX. The main effort then lies in porting the GHC runtime to the TrustZone infrastructure.

The concision and brevity provided by Haskell are notable in all three case studies. In contrast

to development on the Intel C/C++ SGX SDK, HasTEE’s high-level programming model entirely

abstracts away the complexity of dealing with the low-level edl files in the SGX SDK. The remote

procedure calls that happen between the untrusted client and trusted enclave are typechecked in

Haskell, unlike the SGX SDK.

In terms of Information Flow Control, HasTEE’s API represents a significant improvement over

the SGX SDK. The latter does not warn or typecheck a program against accidental data leaks. On

the other hand, HasTEE has stronger compile-time guarantees. For instance, in all three case studies,

the lack of the Binary typeclass constraint would by construction prevent accidental leakage of

the secret data from the enclave.

Additionally, in all three case studies, we observe the RestrictedIO typeclass constraining the

I/O operations possible in the Enclave monad. Notably, in the federated learning example, we

had to modify the homomorphic encryption library to limit its types that involved the IO monad.

Finally, in the password wallet example, the readSecure and writeSecure relieves the enclave

programmer from the burden of key management.

6.2 Comparing HasTEE to GoTEE and 𝐽𝐸

Implementation. Table 11 presents a comparison betweenHasTEE and its two closest counterparts

- GoTEE [Ghosn et al. 2019] and 𝐽𝐸 [Oak et al. 2021]. While both GoTEE and 𝐽𝐸 had to modify the
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Framework HasTEE GoTEE 𝐽𝐸

IFC support

Standard declassifica-

tion

None

Robust declassifica-

tion

Partitioning scheme Type-based Process-based Annotation-based

Modified compiler No Yes Yes

Modified runtime sys-

tem

Yes Yes No

Secure by construc-

tion

Yes No No

Trusted Components

GHC compiler, GHC

runtime, Gramine

GoTEE compiler, Go-

TEE runtime

Java parser and par-

titioner, Jif compiler,

JVM, SGX-LKL[Priebe

et al. 2019]

Programming model Client-server

Synchronous Message-

Passing

Using the object-

framework provided

by Java

Fig. 11. Comparison of HasTEE, GoTee, and 𝐽𝐸 . We specify the core components involved in the Trusted
Computing Base in all three frameworks.

respective compilers, HasTEE required no modifications to the compiler. The specific runtime used

by JE is not mentioned in the paper [Oak et al. 2021]; however, it suggests that no modification of

the runtime was required, as it was run on a large virtualized host - SGX-LKL [Priebe et al. 2019].

In contrast, the runtimes for HasTEE and GoTEE required modification. GoTEE required significant

modifications to the Golang runtime system to enable communication between the trusted and

untrusted memory. The modifications required by HasTEE are all related to running any general

Haskell program in the enclave (Section 4.4.1) rather than the library’s primitives.

Secure by construction. Both GoTEE and 𝐽𝐸 use sophisticated static analysis passes and program

transformations to partition a program into its two components. These passes have to properly

identify which code should go into each respective component and generate the correct RPC

code. This is a complicated but very important process. In contrast, HasTEE does not require such

analyses. HasTEE makes the assumption that the computation in the Enclave monad is secure,

and computation in the Client monad is untrusted. Since the two components are not meant to

rely on each other’s logic, the same program is compiled twice. When the Enclave is compiled the

Client monad is swapped for a dummy implementation, and vice versa. Fig. 1 in the Introduction

(Sec 1) conveyed this general idea.

7 RELATEDWORK
In this section, we will compare the key aspects of HasTEE with its closely related counterparts.

Programming Language support for TEE programming. HasTEE presents, to the best of

our knowledge, one of the first instances of a functional language, Haskell, running on a TEE

environment. Among imperative and object-oriented languages, GoTEE [Ghosn et al. 2019] extends

the Go programming language with a feature called secured routines to model message-passing

between an untrusted client and a trusted enclave. Similarly, 𝐽𝐸 [Oak et al. 2021] adds security-

based annotations to a subset of Java, which allows partitioning Java applications into trusted and
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untrusted components and then enforcing information flow control across the trusted boundary.

Civet [C. Tsai, Son, et al. 2020] is another example of a partitioned Java runtime for enclaves.

In the Rust ecosystem, the Rust-SGX [Wang et al. 2019] project provides foreign-function interface

(FFI) bindings to the C/C++ Intel SGX SDK. The goal of the project is different from HasTEE in that

it does not aim to introduce any programming model for programming TEEs. The main goal of

Rust SGX is to introduce application-level memory safety when programming with the low-level

SGX SDK. HasTEE provides memory safety by the virtue of running on an already memory-safe

language, Haskell. TrustJS [Goltzsche et al. 2017] takes a similar FFI-based approach as Rust-SGX

for programming enclaves with JavaScript.

An important project in this space is the WebAssembly (WASM) initiative [Rossberg 2019].

There have been WASM projects, both academic, such as Twine [Ménétrey et al. 2021], as well as

commercial, such as Enarx [Red Hat 2019], aimed at allowing WASM runtimes to operate within

SGX enclaves. Our initial approach was to use the experimental Haskell WASM backend [Tweag.io

2022] to run Haskell on SGX enclaves. However, the aforementioned runtimes are not supported

by GHC and lack several key features required for loading Haskell onto an enclave.

Partitioning application and programming model. An important contribution of HasTEE is

the seamless program partitioning and familiar client-server-based programmingmodel for enclaves.

The partitioning approach in HasTEE has been adapted from the Haste.App library [Ekblad and

Claessen 2014]. The most well-known automatic partitioning tool for C programs on an SGX enclave

is Glamdring [Lind et al. 2017]. The general idea of partitioning a single program, irrespective of the

application domain, has been studied as multitier programming [Weisenburger et al. 2021]. Among

the existing approaches to multitier programming, HasTEE provides a lightweight alternative that

does not require any compiler modification or elaborate dataflow analysis to partition the program.

In terms of various programming models, GoTEE utilizes a synchronous message-passing-based

approach. A similar but asynchronous message-passing-based model is given by EActors [Sartakov

et al. 2018], an actor-model-based framework for confidential computing, written in C.

Intel SGX application development. The partitioning-based two-project programming model

of Intel SGX has been a significant obstacle to the technology’s adoption. As such, there have

been attempts to virtualize entire platforms within the enclave memory. Haven [Baumann et al.

2015] virtualizes the entire Windows operating system as well as an entire SQL server application

running on top of it. SCONE [Arnautov et al. 2016] virtualizes a Docker container instance within

an SGX enclave. The Gramine [C. Tsai, Porter, et al. 2017] library operating system, which is used

in this work, is also an example of lightweight virtualization.

While a larger body of work has been dedicated to Intel SGX, AMD introduced TEEs in the form

of AMD SEV [AMD 2018], which is natively a virtualization-based approach. Virtualization can

result in drastically increasing the size of the Trusted Computing Base (TCB). Hence, in HasTEE, we

chose the approach with the smallest TCB of 57k lines of code (Gramine). We intend to eventually

move away from Gramine and make the GHC runtime a standalone library inside the SGX enclave

(see Section 8).

Information Flow Control for enclaves. HasTEE draws inspiration from the library-based

lightweight Information Flow Control (IFC) approaches in Haskell [Buiras et al. 2015; Russo 2015;

Russo et al. 2008] for its IFC implementation. This approach relies on the purity of Haskell to

detect and stop malicious behaviour. In contrast, 𝐽𝐸 [Oak et al. 2021] compiles down to the Jif Java

compiler [Myers 1999], which statically checks confidentiality and integrity policies. 𝐽𝐸 employs a

stronger IFC policy based on robust declassification [Myers et al. 2004]. This policy ensures that

low-integrity data cannot influence the declassification of secret data. We relax this policy in favour

of a more user-friendly API.
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Another interesting line of work is Moat [Sinha et al. 2015], which formally models and verifies

enclave programs running on Intel SGX such that data confidentiality is respected. It uses IFC to

enforce the policies and automated theorem proving to verify the policy enforcement mechanism.

8 FUTUREWORK
This paper lays the foundation for several threads of future work.

• The IFC scheme in HasTEE operates on two security levels - private (Enclave) and public

(Client). A natural extension of this work is to enable the use of a hierarchical security

lattice consisting of multiple security levels, where each security level is mapped to unique

enclaves, allowing multi-enclave IFC.

• Another promising line of work is Remote Attestation [Knauth et al. 2018], which allows an

SGX enclave to prove its identity to a challenger using the private key embedded in the

enclave. This unique identification property can facilitate secure communication between

multiple enclaves, both in a multi-enclave and a distributed-enclave setting. It would also

be interesting to see if there could be language-level support for remote attestation.

• Currently, it is unclear how to bring legacy packages into the enclave without extensive

modification. Additionally, the RestrictedIO typeclass makes any library that uses IO

unusable without modification. Future work should look into more principled ways of

bringing legacy packages into the enclave while retaining the ability to analyze their effects

and understand their implications for a security policy.

• A significant obstacle when developing HasTEE was running Haskell programs on an

Intel SGX enclave. While the GHC runtime is extensively optimized for performance,

having a more compact and portable runtime of GHC that sacrifices some performance

by using a restricted set of libc operations could result in a considerably smaller Trusted

Computing Base. A more portable runtime would facilitate HasTEE experiments on other

TEE infrastructures such as ARM TrustZone and RISC-V PMP [RISC-V 2017].

9 CONCLUSION
In this paper, we introduce HasTEE - a type-safe library in Haskell that enables the programming of

Trusted Execution Environments using a familiar client-server-based programming model. HasTEE

raises the level of abstraction over the low-level and error-prone programming APIs provided by

TEE SDKs. Additionally, the partitioning framework proposed by HasTEE is secure by construction,

which is an improvement over other high-level imperative language frameworks.

HasTEE being written in a pure and statically-typed functional language allows enforcing

language-based information flow control mechanisms that protect data confidentiality. We have

demonstrated through three diverse case studies how HasTEE’s IFC mechanism can help prevent

accidental data leakage while producing concise code. We hope that HasTEE will open up future

research avenues at the intersection of hardware-based and programming-language-based security.
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28 Anon.

20 | OnServer Exp

21 | RemoteApp Exp Exp -- (<.>)

22 deriving (Show)

23

24 data Value = IntVal Int

25 | Closure [Name] Exp Env

26 -- HasTEE values

27 | RemoteClosure Name [Value]

28 | ArgList [Value]

29 | Dummy

30

31 -- Error values

32 | Err ErrState

33 deriving (Show)

34

35 data ErrState = ENotClosure

36 | EVarNotFound

37 | ENotRemClos

38 | ENotIntLit

39

40 instance Show ErrState where

41 show ENotClosure = "Closure not found"

42 show EVarNotFound = "Variable not in environment"

43 show ENotRemClos = "Remote Closure not found"

44 show ENotIntLit = "Not an integer literal"

45

46 type Env = [(Name , Value)]

47

48 type ClientEnv = Env

49 type EnclaveEnv = Env

50

51

52 type VarName = Int

53

54

55 data StateVar =

56 StateVar { varName :: Int

57 , encState :: EnclaveEnv

58 }

59

60 initStateVar :: EnclaveEnv -> StateVar

61 initStateVar = StateVar 0

62

63

64 eval :: Exp -> Value

65 eval e =

66 let newEnclaveEnv = snd $

67 evalState (evalEnclave e initEnclaveEnv)

68 (initStateVar initEnclaveEnv)

69 in fst $ evalState (evalClient e initClientEnv) (initStateVar newEnclaveEnv)

70 where

71 initEnclaveEnv = []
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72 initClientEnv = []

73

74 genRemVar :: (MonadState StateVar m) => m String

75 genRemVar = do

76 n <- gets varName

77 modify $ \s -> s {varName = 1 + n}

78 pure ("RemVar" <> show n)

79

80 evalList :: (MonadState StateVar m) => [Exp] -> Env -> [Value] -> m ([Value], Env)

81 evalList [] e vals = pure (reverse vals , e)

82 evalList (e1:es) env xs = do

83 (v, e) <- evalEnclave e1 env

84 evalList es e (v:xs)

85

86

87 evalEnclave :: (MonadState StateVar m)

88 => Exp -> EnclaveEnv -> m (Value , EnclaveEnv)

89 evalEnclave (Lit n) env = pure (IntVal n, env)

90 evalEnclave (Var x) env = pure (lookupVar x env , env)

91 evalEnclave (Fun xs e) env =

92 pure (Closure xs e env , env)

93 evalEnclave (Let name e1 e2) env = do

94 (e1', env ') <- evalEnclave e1 env

95 evalEnclave e2 ((name ,e1 '):env ')

96 evalEnclave (App f args) env = do

97 (v1 , env1) <- evalEnclave f env

98 (vals , env2) <- evalList args env1 []

99 case v1 of

100 Closure xs body ev ->

101 evalEnclave body ((zip xs vals) ++ ev)

102 _ -> pure (Err ENotClosure , env2)

103 evalEnclave (Plus e1 e2) env = do

104 (v1 , env1) <- evalEnclave e1 env

105 (v2 , env2) <- evalEnclave e2 env1

106 case (v1 , v2) of

107 (IntVal a1 , IntVal a2) -> pure (IntVal (a1 + a2), env2)

108 _ -> pure (Err ENotIntLit , env2)

109

110 evalEnclave (Remote e) env = do

111 (val , env ') <- evalEnclave e env

112 varname <- genRemVar

113 let env '' = (varname , val):env '

114 pure (Dummy , env '')

115 -- the following two are the essentially no-ops

116 evalEnclave (OnServer e) env = evalEnclave e env

117 evalEnclave (RemoteApp e1 e2) env = do

118 (_, env1) <- evalEnclave e1 env

119 (_, env2) <- evalEnclave e2 env1

120 pure (Dummy , env2)

121

122 evalList2 :: (MonadState StateVar m) => [Exp] -> Env -> [Value] -> m ([Value], Env

)
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30 Anon.

123 evalList2 [] e vals = pure (reverse vals , e)

124 evalList2 (e1:es) env xs = do

125 (v, e) <- evalClient e1 env

126 evalList2 es e (v:xs)

127

128

129 evalClient :: (MonadState StateVar m)

130 => Exp -> ClientEnv -> m (Value , ClientEnv)

131 evalClient (Lit n) env = pure (IntVal n, env)

132 evalClient (Var x) env = pure (lookupVar x env , env)

133 evalClient (Fun xs e) env =

134 pure (Closure xs e env , env)

135 evalClient (Let name e1 e2) env = do

136 (e1', env ') <- evalClient e1 env

137 evalClient e2 ((name ,e1 '):env ')

138 evalClient (App f args) env = do

139 (v1 , env1) <- evalClient f env

140 (v2 , env2) <- evalList2 args env1 []

141 case v1 of

142 Closure xs body ev ->

143 evalClient body ((zip xs v2) ++ ev)

144 _ -> pure (Err ENotClosure , env2)

145 evalClient (Plus e1 e2) env = do

146 (v1 , env1) <- evalClient e1 env

147 (v2 , env2) <- evalClient e2 env1

148 case (v1 , v2) of

149 (IntVal a1 , IntVal a2) -> pure (IntVal (a1 + a2), env2)

150 _ -> pure (Err ENotIntLit , env2)

151

152

153 evalClient (Remote e) env = do

154 (_, env ') <- evalClient e env

155 varname <- genRemVar

156 let env '' = (varname , Dummy):env '

157 pure (RemoteClosure varname [], env '')

158 evalClient (OnServer e) env = do

159 (e', env1) <- evalClient e env

160 case e' of

161 RemoteClosure varname vals -> do

162 enclaveEnv <- gets encState

163 let func = lookupVar varname enclaveEnv

164 case func of

165 Closure vars body environ -> do

166 (res ,enclaveEnv ') <- evalEnclave body ((zip vars vals) ++ environ)

167 pure (res , env1)

168 _ -> pure (Err ENotClosure , env1)

169 _ -> pure (Err ENotRemClos , env1)

170 evalClient (RemoteApp e1 e2) env = do

171 (v1 , env1) <- evalClient e1 env

172 (v2 , env2) <- evalClient e2 env1

173 case v1 of

174 RemoteClosure f args ->

, Vol. 1, No. 1, Article . Publication date: March 2023.



1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

HasTEE - Confidential Computing on Trusted Execution Environments with Haskell 31

175 case v2 of

176 ArgList vals -> pure (RemoteClosure f (args ++ vals), env2)

177 v -> pure (RemoteClosure f (args ++ [v]), env2)

178 v -> pure (ArgList [v,v2], env2)

179

180

181 -- onServer (f == RemoteClosure f [])

182 -- onServer (f <.> arg == RA f arg == RemoteClosure f [arg])

183 -- onServer (f <.> arg1 <.> arg2 == RA f (RA arg1 arg2) == RC f [arg1 , arg2])

184

185 lookupVar :: String -> [(String , Value)] -> Value

186 lookupVar _ [] = Err EVarNotFound

187 lookupVar x ((y, v) : env) =

188 if x == y then v else lookupVar x env

Listing 13. Operational Semantics of HasTEE

B DATA CLEAN ROOM CODE

1 countingQuery :: Enclave (Ref CleanRoomSt) -> (User -> Bool) -> Enclave Int

2 countingQuery refst q = do

3 st <- readRef =<< refst

4 return $ length $ filter id $ map q (users st)

5

6 laplaceDistribution :: Enclave (Ref CleanRoomSt) -> Double -> Enclave Double

7 laplaceDistribution refst b = do

8 z <- int2Double <$> getRandom refst (0,1)

9 u <- ((/) 1000 . int2Double) <$> getRandom refst (1 ,1000)

10 return $ (2 * z - 1) * (b * log u)

11

12 laplaceMechanism :: Enclave (Ref CleanRoomSt) -> (User -> Bool) -> Enclave Double

13 laplaceMechanism refst q = do

14 st <- readRef =<< refst

15 true <- int2Double <$> countingQuery refst q

16 noise <- laplaceDistribution refst (1 / (epsilon st))

17 return $ true + noise

Listing 14. Code for the laplace mechanism.
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