
SUPERWORD LEVEL PARALLELISM IN THE GLASGOW
HASKELL COMPILER

By

Abhiroop Sarkar

A Dissertation Submitted to the Graduate

Faculty of University of Nottingham

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

Major Subject: COMPUTER SCIENCE

Examining Committee:
Prof. Graham Hutton
Dr. Henrik Nilsson
Dept. of Computer Science

Prof. Graham Hutton, Dissertation Adviser

University of Nottingham
Wollaton Road, Nottingham

September 2018
(For Graduation December 2018)

CONTENTS

LIST OF FIGURES . v

ACKNOWLEDGEMENT . v

ABSTRACT . vi

1. INTRODUCTION . 1

2. VECTORISATION . 3

2.1 Introduction to Vectorisation . 3

2.2 Vectorisation in the x86 instruction set . 4

2.3 Loop Vectorisation . 6

2.4 Vector Machines vs SIMD vectorisation . 8

3. A BRIEF TOUR OF HASKELL . 9

4. THE GLASGOW HASKELL COMPILER . 13

5. LITERATURE REVIEW . 19

5.1 The Intel Haskell Research Compiler . 19

5.1.1 Working with Arrays . 20

5.1.2 Stream Fusion . 20

5.1.3 The IHRC Core Language . 21

5.2 Exploiting vectorisation in streams . 23

5.2.1 Representing Streams . 23

5.2.2 A vector stream representation . 24

6. VECTORISATION IN GHC . 27

6.1 Code generation pipeline . 27

6.2 GHC PrimOps and PrimTypes . 28

6.2.1 Boxed, Unboxed, Lifted, Unlifted types 29

6.2.2 PrimTypes in Haskell . 30

6.3 Adding a sample vector instruction to NCG 32

6.3.1 The broadcast operation . 32

6.3.2 Adding vector primops and primtypes 34

6.3.3 Changes in Cmm and the STG→CMM bridge 37

6.3.4 Liveness analysis . 40

6.3.5 Changes in the NCG . 41

ii

6.3.6 Sinking pass . 43

6.3.7 Reflection . 45

6.4 Supporting smaller integer widths in GHC 45

6.4.1 Adding the new runtime representations 46

6.4.2 Changes in the typechecker . 48

6.4.3 Extending and narrowing registers 49

6.5 Example: Polynomial evaluation using GHC’s vector types 50

6.6 Contributions and Reflection . 53

7. LIFT-VECTOR: A LIBRARY FOR VECTORISATION IN HASKELL 55

7.1 An abstraction for vectors . 55

7.1.1 Typeclasses and type-families to the rescue 55

7.2 Vectorised data structures . 58

7.2.1 A typeclass for generic operations 58

7.2.2 Vector Lists . 60

7.2.2.1 Why not a Semigroup or a Monoid? 60

7.2.3 Vector Arrays . 61

7.2.3.1 Shape Polymorphism . 63

7.3 Performance penalties . 64

7.4 Example: Demonstrating the lift-vector API 66

7.4.1 Parallel Dot Product Illustrated . 67

8. A COST MODELS FOR VECTORISATION . 69

8.1 LLVM’s Cost Model . 69

8.2 An alternate cost model . 70

9. AUTOMATIC VECTORISATION . 72

9.1 Loop Vectorisation and Dependence Analysis 73

9.2 Throttled superword level parallelism algorithm 76

9.3 Reflection . 77

10.EVALUATION . 79

10.1 Dot Product of Vectors . 79

10.2 Matrix Multiplication . 81

10.3 Polynomial Evaluation . 84

10.4 Pearson Correlation coefficient . 87

10.5 Benchmarking infrastructure . 90

10.6 Reflection . 91

iii

11.CONCLUSION . 93

11.1 Contributions . 93

11.2 Future Work . 94

11.2.1 Supporting wider vectors . 94

11.2.2 Improving the lift-vector API . 94

11.2.3 Improving the lift-vector performance 95

11.2.4 More vectorised data structures . 95

11.2.5 Automatic Vectorisation . 96

11.2.6 Programming Models for Vectorisation 96

APPENDICES

A. Intel vs AT&T syntax . 103

B. Code contributions . 104

B.1 Contributions to GHC . 104

B.2 The Lift-vector library . 104

iv

LIST OF FIGURES

2.1 Flynn’s Taxonomy . 3

2.2 Vector addition . 4

2.3 An XMM register . 5

2.4 Streaming SIMD Extensions . 5

3.1 An algebraic data type . 10

4.1 GHC compilation pipeline . 13

4.2 A Capability or a Haskell Execution Context 15

5.1 The IHRC core language . 21

6.1 The Code generation pipeline . 27

6.2 A lifted and boxed type represented in memory 30

6.3 Lifted vs unlifted and boxed vs unboxed type 30

6.4 The core primtypes . 31

6.5 An XMM and YMM register . 33

6.6 Broadcasting a float to an XMM register . 33

6.7 Vectorised polynomial evluation . 51

7.1 Demonstrating scalar ”dribble” . 59

7.2 An unboxed and boxed vector respectively . 62

7.3 Parallelism in Dot Product Illustrated . 68

9.1 A blueprint of automatic vectorisation in GHC 72

10.1 Benchmark of dot product of two vectors . 80

10.2 Benchmark of matrix multiplication of two dense matrices 83

10.3 Benchmark of polynomial evaluation . 86

10.4 Benchmark of calculating the Pearson Correlation Coefficient 90

10.5 Benchmarking infrastructure in lift-vector . 91

v

ACKNOWLEDGEMENT

I would first like to thank my thesis adviser Professor Graham Hutton, the head of the

Functional Programming laboratory at University of Nottingham. He consistently allowed

this thesis to be my own work, but steered me in the right direction whenever he thought

I needed it.

I would also like to thank Carter Schonwald, who unofficially mentored me through

a lot of pitfalls of vectorisation and introduced me to the amazing world of numerical

computing. Special thanks also goes out to Andreas Klebinger from the ghc IRC channel

for always helping me out to understand the compiler better and better everyday.

Finally, I must express my very profound gratitude to my parents and friends for

providing me with unfailing support and continuous encouragement throughout my years

of study and through the process of researching and writing this thesis. This accomplish-

ment would not have been possible without them. Thank you.

vi

ABSTRACT

Superword parallelism or vectorisation has been a popular high performance computing

technique in supercomputers for nearly 50 years now. With the rise of various memory

intensive numerical computing as well as deep learning algorithms like neural networks,

vectorisation is finding itself increasingly being used in commodity hardware as well. For

a long time imperative languages have ruled the rooster for high performance computing,

but over the last decade the purely functional language Haskell has steadily caught up with

the speed and performance of languages like C in various benchmarks. However vectori-

sation remains an unsolved problem for various Haskell compilers. This thesis attempts

to solve that issue by adding support for vectorisation to the Glasgow Haskell Compiler.

It also presents a new library for vector programming called lift-vector which provides

a declarative API for vector programming. We show improvements in performance of

certain numerical computing algorithms using the library and propose a way forward to

automatically vectorise programs inside the Glasgow Haskell Compiler.

vii

1. INTRODUCTION

The ever-increasing complexity and performance requirements of modern software over

the last couple of decades, has prompted hardware designers to introduce a wide range of

parallel architectures. Unfortunately, the age old classical design of imperative/procedural

programming languages and their runtimes are not always amenable to extract the maxi-

mum performance from the underlying parallel hardware.

In his highly cited paper [Fly66], MJ Flynn introduced a taxonomy of parallel ma-

chines, classifying them as Single Instruction Single Data (SISD), Single Instruction Mul-

tiple Data (SIMD) or Multiple Instruction Multiple Data (MIMD) machines. In this thesis

we are concerned with extracting the maximum effectiveness of Single Instruction Multiple

Data support, provided by various major hardware vendors like Intel, AMD, ARM Neon

etc. We look at the origins of vectorisation in more depth in the following section.

Historically the support for SIMD instructions to the x86 instruction set was first

added in the year 1999. Consequently, the Intel Pentium III line of processors started

supporting vector instructions. Competing with Intel, ARM released the NEON vector

instruction as part of its Cortex A5 line of processors in 2003.

SIMD parallelism, also known as super word level parallelism or vectorisation, effec-

tively exposes 128 bits, 256 bits or 512 bits registers and allows data parallel operations

using these super-word sized registers. SIMD technology uses a single instruction to per-

form the same operation in parallel on multiple data elements of the same type and size.

This way, the hardware that generally operates on two 32-bit floats can perform four or

eight or sixteen parallel operations of 32-bit floats in exactly the same amount of time.

The prominent compilers whose code generators support vectorisation (i.e they emit

vector instructions) are the GNU Compiler Collection(GCC) and LLVM compiler tool

chain. Certain APL implementations (like Dyalog APL) also provides support for vector

instructions. Among the newer programming languages Go-lang has very experimental

support for SIMD operations. The Rust language, by the virtue of being hosted using

LLVM, also supports basic SIMD operations.

However if we notice, the focus of vectorisation support primarily exists for compilers

of strictly imperative and high performance system languages. On the other side of the

programming language landscape, functional languages have traditionally been at the

forefront of correctness and verification related research, but have somehow lagged behind

1

2

in the field of high performance computing compared to their imperative counterparts.

With the inception of the Glasgow Haskell Compiler [Jon+93] in 1990, Jones et al showed

that it is possible to efficiently compile a pure lazy functional language to stock hardware

[Jon92] while keeping a transparent performance using the concepts of graph reduction

machines [Cla+80].

Parallel programming in general introduces a number of complexities like locks,

synchronisation, asynchronous exceptions, etc., compared to their sequential counterparts.

Static typed functional programming, provides a user with appropriate abstractions in the

form of higher order functions, typeclasses etc to hide these complexities and make the

syntax much more declarative. Consequently, there has been a number of publications on

declarative parallel functional programming primarily using algorithmic skeletons [Col89]

or redesigning distributed and parallel runtimes for Haskell [Tri+96; LOP05] to hide the

intricacies of synchronisation. Unfortunately, vectorisation (which is not dependent on

number of cores of the machines) has not received a lot of attention, except the now

defunct, Data Parallel Haskell project [Cha+07], which served as a general umbrella for

automatic parallelization using nested data parallelism [Pey+08].

Broadly, the dissertation attempts to answer the question: Can a purely func-

tional language leverage the power of vectorisation, preserving its original

syntax and semantics while being as efficient as low level systems program-

ming languages? We discuss our attempts to extend the GHC code generator with the

support to emit vector instructions, primarily the engineering challenges that we tackled.

We also present a library [Sar18] which wraps over the basic vector types and provide

polymorphic SIMD functions which operates using the vector registers. Followed by that

we present a simple cost model to assess the effectiveness of vectorisation. Finally we talk

about the Throttled SLP algorithm [PJ15], a prospective automatic vectorisation algo-

rithm for GHC and possible changes in intermediate representations to accommodate the

algorithm.

2. VECTORISATION

2.1 Introduction to Vectorisation

This section talks briefly about the history of vectorisation and explains it concep-

tually. The original inception of the idea of vectorisation began with the development of

supercomputers whose processing units were called vector processors. Vector processor

is a central processing unit that contains instructions that operate on one dimensional

arrays of data called vectors, compared to scalar processors, whose instructions operate

on single data items. Cray 1 [Rus78] was the first supercomputer to implement the vector

processor design. Cray 1 supported registers of size 64 bits at a time (1975) when the

conventional commodity machines supported 8 bit or 16 bit registers. Modern day Single

Instruction Multiple Data parallelism as well as GPU technologies are incarnations of the

original vector processor design.

With the inception of a number of powerful supercomputers and vector machines,

MJ Flynn wrote a famous paper in 1966 classifying various types of parallel machines

[Fly66]. Figure 2.1 demonstrates the various class of parallel machines.

Figure 2.1: Flynn’s Taxonomy

Let us elaborate on the nomenclature:

• SISD : Single Instruction Single Data

• MISD : Multiple Instruction Single Data

• SIMD : Single Instruction Multiple Data

• MIMD : Multiple Instruction Multiple Data

3

4

SISD implies a general sequential computer which executes a single instruction to

operate on a single piece of data. MISD doesn’t make a lot of sense and is not generally

used. SIMD falls under the category of data parallelism, when a single instruction is able

to operate on multiple slices of the same data which is commonly known as the vector

machine approach or vectorisation. Finally MIMD generally implies any other parallelism

approach like pipelining, multi core processing etc.

Keeping in mind the context of this report, vectorisation broadly involves loop un-

rolling followed by the generation of packed SIMD instructions supported by the hardware.

These instructions operate on more than one data element at a time which results in better

performance. From the Intel vectorisation manual [Dei+12],

In Computer science the process of converting an algorithm from a scalar

implementation, which does an operation one pair of operands at a time, to a

vector process where a single instruction can refer to a vector (series of adjacent

values) is called vectorisation.

Depending on the hardware, there are various available widths of registers as well

as a variety of vector operations supported. If we assume a 128-bit wide vector register,

it allows us to operate on four 32-bit wide floats. We can visualize it in Figure 2.2

Figure 2.2: Vector addition

Although the figure demonstrates four addition operation, using an example vector

instruction like VADDPS results in the addition of four 32-bit floats with one operation.

2.2 Vectorisation in the x86 instruction set

SIMD instructions are available in almost all major hardware vendors like Intel,

ARM, AMD etc. For the purpose of this report, we essentially focus on the x86 instruction

set. x86 is the de facto instruction set supported on all Intel and AMD processors. The

very first SIMD support in x86 was brought in the form of Matrix Math Extension (MMX)

[PW96] in 1996, which provided instructions operating on 64-bit registers. A number of

5

graphic applications during that time utilised 8-bit or 16-bit registers which allowed MMX

operation to operate on eight or four elements at a time. However, due to certain technical

difficulties regarding the x87 FPU, the floating point support for MMX was disabled and

this did not allow a number of complex math operations like logarithm, exponential, etc.

The newer reincarnation of SIMD support in Intel came in the form of the Streaming

SIMD Extensions or the SSE family of instructions in 1999, which supported about seventy

new vector instructions. SSE was primarily focused on enabling floating point support as

most complex numerical and graphical applications utilise floating point operations. It

introduced a new class of registers called the XMM registers which were each 128-bit wide.

Figure 2.3: An XMM register

The term ”streaming” in SSE refers, to the representation of the data as a stream of

infinite input, which is fed to each individual instruction and operated parallely. Figure 2.4

demonstrates the concept visually. Followed by SSE, a number of extensions were made

to the SIMD family in the form SSE 2, SSE 3, SSSE3 which included integer support

for vector instructions, new operations like broadcast, shuffle, etc. This is relevant to

us because in some of the following chapters we will witness an interplay between these

various families of SIMD instructions.

Figure 2.4: Streaming SIMD Extensions

6

Followed by SSE, Intel introduced the Advanced Vector Extensions (AVX) [Fir+08]

family of instructions in 2008. AVX introduced a number of new instructions and provided

even better single instruction support for vectorisation. For instance, broadcasting of floats

to an XMM register can be done by a single AVX operation (VBROADCASTPS), instead

of the complex bit twiddling techniques in the SSE family. However the primary difference

was the operator-operand notation. Originally SSE family of instructions followed the

notation:

Operator R1 R2

which roughly translates to R1 = R1 ‘operator‘ R2. The AVX family notations are

of the form:

Operator R1 R2 R3

which is read as R1 = R2 ‘operator‘ R3. This notation makes the instructions much

more readable. Note, that for this as well as the entirety of the report we shall choose the

Intel syntax for assembly instructions rather than the AT&T instruction format. This is

for the convenience of translating assembly instructions from the Intel instruction manual.

However, GHC as well as GCC, clang and all major compilers use the AT&T notation

while emitting the assembly and the GCC assembler understands the AT&T notation.

This is a source of major confusion while reading assembly, so we discuss the notations in

detail in Appendix A.

2.3 Loop Vectorisation

One of the primary targets of vectorisation is loops. Loop vectorisation transforms

multiple scalar operations into single vector operations. It achieves this by unrolling

the loops followed by packing the elements in vectors and operating on them. Let us

take an example, assuming that we are operating in an array of size sixteen elements

and performing simple addition of two arrays and storing the result in a third array. In

pseudocode notation we have:

1 for (int i=0; i<16; ++i)

2 C[i] = A[i] + B[i];

7

Loop unrolling transforms this program to:

1 for (int i=0; i<16; i+=4) {

2 C[i] = A[i] + B[i];

3 C[i+1] = A[i+1] + B[i+1];

4 C[i+2] = A[i+2] + B[i+2];

5 C[i+3] = A[i+3] + B[i+3];

6 }

Notice the change in the stride of the loop. We traverse four elements at a time.

Vectorisation now packs four of these elements into a vector type and operates on them

using a single operation.

1 for (int i=0; i<16; i+=4) {

2 vec_A = pack(A[i],A[i+1],A[i+2],A[i+3]);

3 vec_B = pack(B[i],B[i+1],B[i+2],B[i+3]);

4 vec_C = vectorAdd(vec_A,vec_B);

5

6 C[i] = unpackToIndex(vec_C, i)

7 C[i+1] = unpackToIndex(vec_C, i)

8 C[i+2] = unpackToIndex(vec_C, i)

9 C[i+3] = unpackToIndex(vec_C, i)

10 }

The original scalar version of the program used a total of sixteen addition operations.

The vectorised version of the program uses four vector addition operations so it results

in a save of twelve instructions on a data size of sixteen elements. This should imply a

3X speed straight away, but the cost model is not so simple. Although the number of

operations are reduced we have added pack and unpack operations and they have their

own overhead. In fact in such a small data size of sixteen elements, the cost of packing-

unpacking will dominate over the gains that we have for vectorisation. In a larger data

size of 1024 elements or even bigger data sets the gains of vectorisation will outweigh the

loss of packing-unpacking. Also nested loops provide further challenges while vectorising.

8

We discuss about the compiler cost models as well as loop optimisation strategies in depth

in the upcoming chapters.

2.4 Vector Machines vs SIMD vectorisation

Although we discussed the concepts of vectorisation in the context of vector ma-

chines as well as SIMD units in commodity computers in the same breath, a lot of the

vectorisation theory from vector machines does not directly translate well to SIMD based

vectorisation. Firstly, there are a number of architectural differences between the tradi-

tional vector machines and the SIMD units of computation. As stated in the vectorisation

paper of GCC by Naishlos et al [Nai04],

SIMD memory architectures are typically weaker than those of traditional vec-

tor machines.The former generally only support accesses to contiguous memory

items, and only on vector length aligned boundaries. Computations, how-

ever, may access data elements in an order which is neither contiguous nor

adequately aligned. SIMD architectures usually provide mechanisms to reor-

ganise data elements in vector registers in order to deal with such situations.

These mechanisms (packing and unpacking data elements in and out of vec-

tor registers and special permute instructions) are not easy to use, and incur

considerable penalties.

The boundary alignment issues are among some of the important engineering prob-

lems that we have to tackle in the code generator. The memory access as well as update

becomes much more involved and the onus is not only on the compiler writers to write

the most efficient forms of accesses and updates, but also equally on the library authors

to reduce packing-unpacking as much as possible. This is quite a challenging task, which

we shall witness in the chapter discussing our lift-vector library.

An additional constraint, is presence of a number of domain specific instructions as

well as the variety of micro-architectures supporting different forms of these instructions.

We tackle most of these problems in the code generator and describe most of the high

level choices that we make in the following chapters.

After giving a general overview of vectorisation as well as discussing the challenges

very briefly, we now switch over to talking about Haskell and its compiler in the next

couple of chapters.

3. A BRIEF TOUR OF HASKELL

This chapter comprises of a whirlwind tour of Haskell. This is principally targeted towards

audience who are absolutely unfamiliar with the language. Interested readers are requested

to read much more detailed treatises of the subject like Programming in Haskell [Hut16] by

Graham Hutton. Experienced Haskell programmers can safely skip this section, although

certain newer extensions of the original Haskell 98 specification like type families are also

described in this part.

Haskell handles all values and data as immutable by default, which makes it a great

language to express concurrency and parallelism. One of the most distinctive features

of Haskell is it’s order of evaluation. Unlike almost every major programming language

in existence, all Haskell expressions are lazily evaluated. In more formal denotational

semantics terminology, Haskell supports non-strict semantics, which allows it to bypass

undefined values and in a way represent infinite data in the language. A number of

advantages of lazy evaluation as well as immutability like modular code, is discussed in

detail in a seminal paper by John Hughes [Hug89].

In addition to the evaluation order a unique feature of Haskell is that, it is a pure

functional programming language. The purity or impurity of a language is a topic of much

debate [Sab98], however to simplify the discussion we say that Haskell is a languages where

side effects are not allowed. Any effectful function is expressed in the type system using

the concept of a monad [Wad90].

One of the crown jewels of Haskell is its powerful type system. Haskell makes a

very clear distinction between the value level and the type level. At the same time it

allows advanced users, a lot of flexibility to blur the lines between values and types. The

fundamental building block of the Haskell type system is algebraic data types (ADTs).

They are basically composite data types which are composed of other data types. Algebraic

Data Types are described as sum types or product types.

Figure 3.1 demonstrates a basic ADT. The keywords data as well as newtype are

used to construct a new data type. The first string after an equal sign is the data con-

structor which is equivalent to object constructors in object oriented languages.

Now we take a look at some different ways of constructing types below:

1 -- An example of enumeration:

9

10

Figure 3.1: An algebraic data type

2 data Season = Spring | Summer | Autumn | Winter

3

4 -- An example of a product type

5 data Pair = Pair Int Int

6

7 -- An example of a sum type

8 data Shape = Circle Float | Rec Float Float

9

10 -- Polymorphic and recursive

11 data Tree a = Leaf a

12 | Node a (Tree a) (Tree a)

13

14 -- Type Synonyms

15 type Weather = String

16 > "warm" :: Weather

17

18 -- Newtypes

19 newtype Weather = Weather String

20 > Weather "warm" :: Weather

A newtype doesn’t have any runtime overhead, however it is constrained to have

only a single value constructor and a single value.

Typeclasses : Now we look at one of the most unique and novel features of Haskell

called typeclasses [WB89] which allows us to utilise a very ad hoc form of polymorphism.

We use the term ad hoc to imply that this type of polymorphism is not shipped as a

fundamental feature of the type system and it is glued on top of the language.

11

1 class (Eq a) => Ord a where

2 compare :: a -> a -> Ordering

3

4 data Ordering = EQ | GT | LT

The above snippet creates a typeclass Ord that is parameterized on some polymor-

phic type a which itself must have an Eq typeclass instance. The function that a data type

needs to implement this typeclass is the compare function which takes in two polymorphic

types a and returns some value of type Ordering. In OOP terminology, a typeclass is

crudely an analogue of an interface with extended functionalities. This is an important

concept because we heavily use typeclasses in our lift-vector library.

We finally introduce the concept of associated types or type families [Cha+05] which

is another important concept for understanding the lift-vector library as well as certain

portions of the literature review.

Associated Types : The type system of Haskell allows us to perform a powerful

form of ad-hoc overloading using typeclasses. We might further want to modify the data

representation and algorithms at the type level while depending on the structure of the

data, and associated types provide exactly the support for that. A very motivating use

case of associated types was first given by Ralf Hinze [Hin00] in the representation of the

generalised trie or generic finite maps. These maps change their representations depending

on the key type k used to index the map.

1 class MapKey k where

2 data Map k v -- the Associated type

3 empty :: Map k v

4 lookup :: k -> Map k v -> v

The above snippet looks like an ordinary type class except the additional associated

type declaration which forms a codomain of the Map. Effectively the representation of the

map depends on the type k of keys, while it is also parametrically polymorphic in the value

type v. The same constraint could also be expressed using Multi Parameter typeclasses

and functional dependencies in Haskell 2010, but associated types have a cleaner syntax

and is more expressive than functional dependencies which is discussed in detail in the

12

paper by Chakravarty et al [Cha+05]. So depending on the instances the representation

of the Map type would vary like below:

1 instance MapKey Int where

2 data Map Int v = MapInt (Patricia.Dict v)

3 empty = MapInt Patricia.emptyDict

4 lookup k (MapInt d) = Patricia.lookupDict k d

5

6 instance MapKey () where

7 data Map () v = MapUnit (Maybe v)

8 empty = MapUnit Nothing

9 lookup Unit Nothing = error "unknown key"

10 lookup Unit (Just v) = v

11

12 instance (MapKey a, MapKey b)) =>

13 MapKey (Either a b) where

14 data Map (Either a b) v =

15 MapEither (Map a v) (Map b v)

16 empty = (Nothing, Nothing)

17 lookup (Left a) (fm1, fm2) = lookup a fm1

18 lookup (Right b) (fm1, fm2) = lookup b fm2

Another relevant point is the difference between data families and type families

which syntactically differ only in the use of the keyword data and type respectively. How-

ever the former constructs a new type like the instance definitions given above while the

latter acts exactly like a type synonym without creating a new type. Type families are

hence non-injective in nature. Injective type families were introduced in GHC 8 and are

beyond the scope of this report.

We use associated types to create a polymorphic API for working with the multitude

of vector data types and tuples in our lift-vector library. This concludes our tour of Haskell

and in the next section we shall look at the internals of the Glasgow Haskell Compiler.

4. THE GLASGOW HASKELL COMPILER

The Glasgow Haskell Compiler [Jon+93] which shall henceforth be addressed as GHC, is

a state of the art optimising functional language compiler. GHC is an implementation of

the Haskell 2010 language spec along with the additional languages extensions. GHC is a

bootstrapping compiler which means the compiler is itself written using the host language.

The compiler contains close to 715,000 lines of Haskell and the runtime is written in about

85,000 lines of C. GHC is an old and formidable piece of codebase which has evolved to its

current form over the last thirty years. The entire GHC compilation pipeline is summarised

in the figure below. Image taken from [BW12].

Figure 4.1: GHC compilation pipeline

Figure 4.1 gives a detailed overview of all the phases that a source file written in

Haskell goes through. Each of the phases are discussed below:

• .hs files : The original source code is written in a .hs file which contains the syntax

13

14

of the entire Haskell language specification. The parser parses this file.

• Parsing: GHC uses its own lexer and parser known as Alex and Happy respectively,

both authored by Simon Marlow, which provides a functional API to the generally

imperative alternatives Flex, Yacc, Bison etc.

• Renaming: This phase renames each of the identifiers to their fully qualified names,

while identifying any out-of-scope identifier and raising the necessary errors.

• Type Checking : In this phase the types of each of the identifiers are checked to see

if the program is type correct. The input to the type checker is HsSyn Name and the

output is HsSyn Id, where Id is a Name with extra information: notable a type.

• Desugaring : In this phase all the syntactic sugar is shed and the full blown Haskell

language is compiled down to a small intermediate language called Core. The Core

language is a variant of lambda calculus known as System F [Rey74]

• Optimization passes : Followed by desugaring a number of optimization passes takes

place in the form of the Simplifier which performs a series of correctness-preserving

transformations.

• STG : The spineless tagless graph machine is an abstract machine which represents

the execution model of a lazy language. We shall talk about STG and its following

phases in a little more detail, as the majority of our code changes reside there.

Spineless Tagless G Machine : STG as a language, is even smaller than the Core

language. It is entirely composed of let blocks and case clauses. let blocks are used for

laziness and case clauses for eager evaluation. The STG program exists in an intermediate

representation form know as Administrative Normal Form or ANF [SF93]. In ANF, all

arguments to a function must be trivial. That is, evaluation of each argument must halt

immediately.

The STG machine comprises of three major parts :

• STG registers : STG supports a set of virtual registers for manipulating the heap

and stack, as well as generic registers for argument passing between function calls.

GHC can handle these virtual registers by either storing them all on the Heap or

pinning some of them to a certain hardware registers, depending on the portability.

15

Most of the STG registers actually reside on the stack in a block of memory pointed

to by a special STG register called the BaseReg.

• STG stack: A region which grows downward in the memory. The STG stack is

responsible for storing function arguments and continuations.

• STG heap : The major region which grows upwards in memory, towards the stack.

It is responsible for storing functions, thunks and data constructors.

Haskell Execution Context : We talk about the actual machine code generator,

after we discuss how the GHC runtime models STG. It does so in the form of what is called

a Haskell execution context or capability of the runtime system. Each capability holds all

of the information like the region of the heap in the nursery region or additionally what

objects needs to be garbage collected. At the operating system level a capability maps to

an individual OS thread and each thread maintains all the STG information mentioned

above. We can visualise this translation between STG , the Haskell Execution Context

and the actual machine registers in Figure 4.2. (Figure from [T12])

Figure 4.2: A Capability or a Haskell Execution Context

Code Generation: The STG code is finally translated to Cmm (or C minus minus)

which is the final low level intermediate representation before the actual machine code

16

generation. GHC’s implementation of Cmm is based on the original C−− language spec

[JRR99], with numerous changes. Cmm is a low level language which almost resembles

C but has support for low level features like labels. Cmm also supports has an explicit

stack to enable tail recursion. Cmm is a typed language. It primarily supports two types

of values: bit vectors or floats. Bit vector is itself a polymorphic type and may come in

several widths, e.g., bits8, bits32 , or bits64. Additionally there is also the bool type.

We demonstrate certain sample Cmm programs:

1 /* Ordinary recursion */

2 export sp1;

3 sp1(bits32 n) {

4 bits32 s, p;

5 if n == 1 {

6 return(1, 1);

7 } else {

8 s, p = sp1(n-1);

9 return(s+n, p*n);

10 }

11 }

12

13 /* Tail recursion */

14 export sp2;

15 sp2(bits32 n) {

16 jump sp2_help(n, 1, 1);

17 }

18

19 sp2_help(bits32 n, bits32 s, bits32 p) {

20 if n==1 {

21 return(s, p);

22 } else {

23 jump sp2_help(n-1, s+n, p*n)

24 }

25 }

17

Cmm, while being relatively low level, still manages to abstract the gory details of

assembly programs and even at this layer the actual machine level registers remain hidden.

Almost half of our work lies in adding vector machine operators at the Cmm level and

then parsing it to emit the correct assembly instructions, depending on the backend. GHC

supports three backends:

• C backend : The C backend was the first backend written for GHC and it exists for

the purpose of portability. Its performance as well as compilation times are much

slower than the other backends. There are number of other issues related to poor

performing optimisation passes in the assembly generated, which doesn’t make it

the best backend to implement vectorisation.

• Native code generator (NCG) : The most highly used and performant backend is

the so called native code generator. This code generator supports a number of

architectures like x86, x86 64, SPARC and Power PC. We primarily target the x86 64

and x86 vector instructions. However our general assumption is always a word size

of 64 bits, and in a later section we shall see how we introduce integers of various

other widths in GHC, to avoid any word size dependence confusion, which allows us

to safely emit vector instructions for x86 as well as x86 64.

• LLVM backend : The LLVM backend is a relatively newer entry which emits LLVM

bit code, which further undergoes all the LLVM related optimizations including

vectorisation. In fact the LLVM backend is the only existing backend which can

emit vector instructions. The Cmm code in its final phase is transformed into a

CPS(continuation passing style) form and the backend emits the SSA(static single

assignment) form LLVM IR. This overhead of the translation from CPS to SSA form,

while rectifying the explicit stack happens through the mem2reg pass of LLVM.

However the IR emitted is not optimal as detailed in [TC10]. We discuss about the

translation overhead between these intermediate representations and provide some

possible changes in the IR languages of GHC in the final chapter of this thesis.

LLVM itself does automatic vectorisation and there need not be any changes in the

code generator of GHC for vectorisation. However this leads to very poor quality

vector code because a lot of relevant information is lost while translating between the

IRs. In our case, we fundamentally change the code generator and the Cmm layer

to understand vector operations. Additionally the existing LLVM backend is being

18

entire re-implemented[dev13] owing to a number of bugs related to code generation.

Hence we choose to work with the x86 native code generator.

This brings us to the end of the discussion on the various phases of the Glasgow

Haskell Compiler. Before we begin to demonstrate our work on the GHC source code, in

the next section, we talk about a couple of important papers that we have reviewed in the

context of vectorisation and its benefits in Haskell.

5. LITERATURE REVIEW

In this chapter we look at two papers published in 2013, which attempt to address the

advantages of vectorisation in Haskell. The first paper studies the Intel Haskell Research

Compiler [Liu+13] which intercepts the output of the Core language from GHC and

applies some of its own optimisations which benefit array computations. The compiler

then proceeds to emit a C like language called Pillar [And+07] which can be compiled

with both GCC as well as the Intel C compiler.

The second paper on the other hand restricts itself to GHC and tries to leverage the

possible vectorisation from the LLVM backend. The work in this paper is more high level,

it talks about a new representation of streams [Hin08] which can utilise the vectorisation

offered by the compiler. The work in this paper is relevant to the lift-vector library that

we have designed.

5.1 The Intel Haskell Research Compiler

We discuss the paper Automatic SIMD vectorisation for Haskell [POG13] by Peter-

son et al, which works on the Intel Haskell Research Compiler (IHRC). The IHRC compiler

utilizes a static single assignment form or SSA based representation as its intermediate

language. An SSA form representation [RWZ88] is more common in compilers for imper-

ative languages like Fortran or C. Functional languages like Haskell use different forms

of intermediate representations(IR) like continuation passing style or CPS [Rey72] or ad-

ministrative normal form or ANF [SF93] style of representation for their intermediate

languages. This is a unique choice of IR for a functional language compiler.

An SSA form enforces that every variable is assigned exactly once and it is initialised

before its use. For example:

1 y := 1

2 y := 2

3 x := y

In SSA the above becomes:

1 y1 := 1

19

20

2 y2 := 2

3 x1 := y2

As a result, the control flow graph [All70] for the program becomes relatively sim-

pler to analyse. In the control flow graph of a program the loop becomes the strongest

connected component of the graph. Most of the compiler is designed to work with mutable

and immutable arrays, with the optimisations focused on the latter. All general compiler

optimisations like inlining, contification[FW01], loop-invariant code motion and a general

simplifier [AJ97] are present in the compiler. The compiler targets a variant of C known

as Pillar [And+07]. The pillar code is finally translated using the Intel C compiler or GCC

to emit the machine code. All of this is linked with a small run-time supporting garbage

collection.

5.1.1 Working with Arrays

Apart from the different intermediate representation, a major point of difference

is the handling of immutable arrays. Haskell provides certain high level libraries like

Data.Vector and REPA [Kel+10] to work with general immutable arrays. However the

handling of these arrays are very different compared to imperative languages. The arrays

are represented as streams and the operations undergo a powerful optimisation called

Stream Fusion [CLS07].

5.1.2 Stream Fusion

Higher order functions initially turns the array into a stream based representation

(which we discuss in depth in the next literature review). The function is applied to

individual element of the stream, followed by which a mutable array of the original size

is created. Each element of the array is successively initialised using array updates and

finally this mutable array is frozen to an immutable array type. This action of thawing and

freezing a data structure in Haskell happens inside the ST Monad [LP94]. GHC utilises

aggressive inlining and multiple simplification functions to eliminate all the intermediate

structures created.

Unfortunately this form of mutable array creation and consumption is hard to op-

timise for the IHRC compiler. To handle this the IHRC compiler extends GHC with

a primitive immutable array type and a special kind of operation termed as initialising

write. According to the paper,

21

The two invariants of initialising writes are that reading an array element must

always follow the initialising write of that element, and that any element can

only be initialised once. This style of write preserves the benefits of immutabil-

ity from the compiler standpoint, since any initialising write to an element is

the unique definition of that element.

As a result of the above two invariants, IHRC is able to work with immutable arrays

and can vectorise loops which operates on these arrays. Loops generally comprises of a

major part of a program. The purpose of the loops are to initialise these immutable

arrays or perform reductions over them. IHRC specifically targets these loops and tries

to generate SIMD code for these loops.

5.1.3 The IHRC Core Language

One fundamental novelty of IHRC is, it defines its own vector core language which

is based on array computations. We will spend some time discussing the core language of

IHRC as it can serve as a great template for adding auto-vectorisation support to GHC

(which we discuss in the final two chapters). The entire syntax of the core language and

operations of the compiler, as defined in the paper, is given in Figure 5.1

Figure 5.1: The IHRC core language

As we can see in the figure, there are two kinds of register given by k ::= s|v. s

22

stands for scalar and v stands for vector. For the sake of simplicity the paper assumes a 32

bit machine with 32 bit width scalar registers and 256 bits wide SIMD registers. Handling

other register widths and different micro architectures is a separate problem statement.

We are more interested in the high level core language presented in the paper.

Most of the operations are very common and most of the variety of instructions lie

in the loading and storing of various kinds of elements to the various types of registers.

The unique notion of immutability in the array types (denoted by xs[ys] or xs[〈yv〉]

etc) is itself an unchecked invariant of the language such that ”every element of the array is

initialised before it is read, and that every element of the array is initialised at most once.”

Hence immutability of the array type is obtained by constraining the write operation on

arrays to be simply initialising write and not mutation.

Some notable operations are the scatter and gather operations which are very com-

mon in parallel computing. They are defined above as:

zv = xs[〈yv〉]

It takes a single array xs and a vector of offsets yv and binds them all together into

the vector zv. This operation can be seen as a ”gathering” of multiple vectors and is called

the gather operation. The dual of this operation is called scatter which is:

xs[〈yv〉]← zv

and it writes or scatters the elements of the array zv to the array of offsets. Generally

the elements won’t be laid out uniformly in the memory, however in the cases that this

happens, the core language adds a special instruction support for vectors where stride

in the layout of the memory is known to be one. Many architectures support these

idioms directly, as a result of which the support of these instructions provide an improved

performance.

A full IHRC program contains a single control flow graph with a designated entry

label L and bunch of other labels leading ahead from it. Programs keep on executing,

traversing the control flow graph until it encounters a halt instruction. The style of single

static assignment form used in IHRC is comparable to the MLton compiler [Wee06].

Reflection : The paper shows benchmarks where there are major gains compared

to the scalar code from native code generator as well as the vectorised code from the

LLVM code generator. One of the principal reasons for this performance gain was the

ability to tap into the stream fusion optimisation. GHC additionally allows us to specify

rewrite rules which can aid the fusion and remove intermediate data structures. Another

23

principal takeaway was the separate core language design which natively supports parallel

computing operations to enable vectorisation.

5.2 Exploiting vectorisation in streams

The theme of this review is much more high level compared to the previous liter-

ature on the vector core language. We look at the paper Exploiting Vector Instructions

with Generalised Stream Fusion [MLP13] by Mainland et al, which crafts a stream repre-

sentation which can leverage the vectorisation support from the hardware.

5.2.1 Representing Streams

The principal necessity of streams (aside from expressing infinite structures) arises

from the fact that compilers are not good at optimising recursive functions. As a result, a

stream based representation is used, so that the functions applied to the data structures

are not recursive in nature. We present the stream type below:

1 data Stream a where

2 Stream :: (s -> Step s a) -> s -> Int -> Stream a

3 -- -------------- ^ ^

4 -- ^ | |

5 -- | | size

6 -- | existentially quantified state

7 -- a step function which when given the state produces a step

8

9 data Step s a = Yield a s

10 | Skip s

11 | Done

A step either yields a new element and a new state, or demarcates the end of the

stream, or skips producing a new element but returns the state. We can encode infinite

structures like this using the Yield constructor as a generator.

The advantage of this representation is that, the higher order functions are no longer

recursive. It can be demonstrated using the basic example of a map function over vectors

from the Data.Vector library, which looks like this:

24

1 map ::(a -> b) -> Vector a -> Vector b

2 map f = unstream . maps f . stream

The auxiliary maps function expresses the original recursive function in a non re-

cursive fashion.

1 maps :: (a -> b) -> Stream a -> Stream b

2 maps f (Stream step s) = Stream step' s

3 where

4 step' s = case step s of

5 Yield x s' -> Yield (f x) s'

6 Skip s' -> Skip s'

7 Done -> Done

The stream and unstream converts the vector to a stream representation and vice

versa, respectively. Now this allows us to derive the compositional laws for map, using

equational reasoning;

map f ◦map g

≡ unstream ◦maps f ◦ stream ◦ unstream ◦maps g ◦ stream

(given stream ◦ unstream = id)

≡ unstream ◦maps f ◦maps g ◦ stream

As previously mentioned GHC supports something called rewrite rules [JTH01]

which precisely allow us to express algebraic identities like stream ◦ unstream = id.

Stream fusion utilises these kind of rewrite rules to eliminate intermediate structures.

Digressing slightly, this is one of the major advantages of having a datatype be an instance

of a law abiding type class. We can capture these laws as rewrite rules which the GHC

simplifier can heavily use to optimise and eliminate intermediate structures.

5.2.2 A vector stream representation

The stream representation clearly yield one element at a time and any data structure

built around that notion would not be amenable to utilise the underlying vectorisation of

the hardware. We need a presentation which yields n elements at a time, where n is the

25

vector width. For vectorising 32-bit floats on an XMM register we would want the stream

to yield four elements at a time. But what happens when the size of the stream element

is not a multiple of four? And how does the number of elements yielded adjusts with

the width? To answer the above questions Mainland et al, presents a vectorised stream

representation which represents a stream as a bundle of streams.

1 data Bundle a = Bundle

2 { sSize :: Size

3 , sElems :: Stream a

4 , sChunks :: Stream (Chunk a)

5 , sMultis :: Multis a}

The first field sSize denotes the size of the stream and the field sElems represents

the original stream as denoted by the type of the field. The field sChunks enables the

usage of bulk memory operations.

1 data Chunk a = Chunk Int (forall s. MutableVector s a -> ST s ())

The definition of Chunk utilises the MutableVector type which provides a function

called copyMVector which internally uses the memcpy instruction to copy the vector. This

vector notably runs inside the ST Monad [LP94] which uses the concept of thawing and

freezing as mentioned in the Section 5.1.2 to optimise the process.

While the Chunk representation can utilise the memcpy system call to optimise vector

append, it is not the best possible representation for operations like zipWith, fold etc which

are the best targets of vectorisation. The sElems field allow sequential stream operation

but the vector variants are accessed in the sMultis field.

Broadly, the Multis type uses a type family (which was discussed in chapter 3) to

depend on the vector width size and also on the producer and consumer demand rate to

create a vector representation. The derivation of the entire Multis type is quite involved

and the interested reader is encouraged to read the original paper [MLP13] for more

details.

Reflection : In this section we saw that, the derivation of a data representation

which is amenable to leverage the vectorisation is quite involved. Recursion is the bread

26

and butter of functional programmers, however due to the compiler not being able to

optimise recursive function, the authors had to jump through quite a few hoops to create

a stream representation. We shall take inspiration from the above design to create the

data representations of our lift-vector library discussed in chapter 7.

6. VECTORISATION IN GHC

The major part of this thesis has been tackling the engineering challenges in retrofitting

the vector instruction support to the native code generator. We use the term retrofitting

because the original design of Cmm did not account for the existence of vector operations.

As a result, to leverage the multiple optimisation passes happening in Cmm itself, we have

to fit the vector instructions in a relatively awkward form as we shall see in the following

sections. We shall start by looking at the code generation pipeline in more detail.

6.1 Code generation pipeline

Figure 6.1: The Code generation pipeline

In Figure 6.1 we zoom in on the general code generation pipeline where most of

our work resides. Majority of our work on Floats and Doubles is limited to this region,

however when adding support for more precise integers we end up touching the type

checker as well as certain portions of the Core expressions.

In the above figure each of the blocks with a subscript Cmmn takes a Cmm program

as input and return a correctness preserving Cmm program with each of the optimisation

pass applied. There are a number of optimisation passes in Cmm like:

• Control Flow Optimisation

27

28

• Common Block Elimination

• Proc-point splitting [Cli12]

• Layout stack

• Variable Sinking

• CAF analysis

• Convert Cmm to CPS style

We demarcate variable sinking specifically in the figure because the final form of

the STG expression, of the vector operations, were specifically designed so that they

could leverage the variable sinking pass. Other small changes were made in each of these

individual passes to allow them to optimise the vector operations as well.

6.2 GHC PrimOps and PrimTypes

The name PrimOps is short for Primitive Operations in GHC. PrimOps and Prim-

Types are functions and data types respectively, that cannot be implemented in Haskell

and are provided natively by GHC. The distinction between Haskell and GHC should be

noted in the last statement. Haskell, in itself, is simply a language specification [Mar+10;

Jon03] which details the existence and specifications of fundamental data types like Int,

Float, Double. On the other hand a compiler writer is free to implement these data

types using as many optimisations possible, while sticking to the core specifications. For

example the Haskell 98 report states,

Int is a fixed-precision integer type with at least the range [−229..229−1].

The specification states the minimum range. A fixed precision integer, as provided

by GHC, is machine dependent and has size 64-bits on a 64 bit machine or 32-bits on a

32 bit machine. It makes sure that it obeys the original specification but optimises the

representation accordingly. Likewise other Haskell compilers like Yale Haskell uses 31-bits

to represent Int (the 32nd bit is used for tagging.)

The primops and primtypes are made available as a virtual module called GHC.Prim.

This module does not exists on the disk or the source tree. It is created during bootstrap-

ping 1 the compiler. It parses the file compiler/prelude/primops.txt.pp. For each

1bootstrapping a compiler is compiling the compiler itself, using the same compiler!

29

primop in the file the following is defined:

• The actual operation name (eg. broadcastFloatX4#)

• The type signature of the operation

• The constructor name in GHC’s PrimOp data type.

• An additional field to encode properties like commutative, llvm only etc

An example of the integer multiplication primop is given below:

1 primop IntegerMulOp "timesInteger#" GenPrimOp

2 Int# -> ByteArr# -> Int# -> ByteArr# -> (# Int#, ByteArr# #)

3 with commutable = True

4 out_of_line = True

The file compiler/prelude/primops.txt.pp is parsed by the source code in the

module utils/genprimopcode. It contains a lexer, parser and code generator for the file,

which generates the entire GHC.Prim module where the central data types reside. For

adding vector types we shall modify the primops file. But however before proceeding to

add the vector types we need to understand the notion of boxed, unboxed, lifted and

unlifted types in GHC.

6.2.1 Boxed, Unboxed, Lifted, Unlifted types

The general data types in Haskell like Int, Float etc are what we refer to as boxed

types. They are represented by a pointer to the heap, whereas unboxed types are just

the values themselves. We take the example of an Int type, say the number ”7”. Its

representation in memory is given in Figure 6.2. Figure from [T12].

The ”7#” given in the figure represents the unboxed type. If we see how an Int is

represented in GHC, it is like this:

1 data Int = I# Int#

The type Int# is what we call an unboxed type. It represents a raw machine integer.

On a 64-bit machine it is 64-bit wide. In addition to the concept of boxing Haskell has a

notion of liftedness or what is known in Haskell terminology as levity.

30

Figure 6.2: A lifted and boxed type represented in memory

A lifted type implies something that is lazy. Richard Eisenberg, a prominent GHC

researcher states ”It is considered lifted because it has one extra element beyond the usual

ones, representing a non-terminating computation.” The kind2 of a lifted type is always

’*’. On the other hand, an unlifted type is always strict. The kind of an unlifted type is

’#’. So in Figure 6.2 ”7#” is an unlifted and unboxed type, whereas the Int type ”7” is

lifted and boxed.

This begs to ask the question can a lifted type be unboxed? Indeed, it can be! A

memory array is always represented with a pointer to a heap which makes it a lifted type.

However, it representation in memory like the types ByteArray# is always strict. This

makes it a lifted but unboxed type.

The relationship between these four types can be summarised using this table by

Eisenberg from his paper on Levity Polymorphism [EP17].

Figure 6.3: Lifted vs unlifted and boxed vs unboxed type

6.2.2 PrimTypes in Haskell

The previous section on lifted, unlifted, boxed and unboxed types provides us the

vocabulary to talk about all the existing types and primops in GHC. From this point

2In type theory, a kind is the type of a type constructor or, less commonly, the type of a higher-order
type operator.

31

onward, unless specified, we shall not make any distinction between lifted and boxed

types or unlifted and unboxed type. This is because for all practical purposes of this

report we won’t be working with the lifted and unboxed types like ByteArray#.

In the section that follows this one, we shall talk about the necessary changes in the

GHC source tree to add support for the vector types. Before that we want to compile a

list of the fundamental primtypes that we have, which will help us create the vector types

by composing these basic types.

Figure 6.4: The core primtypes

Figure 6.4 represents the major numeric and character data types and the fun-

damental primtypes used to define them. We can already spot a fundamental issue that

Int8, Int16, Int32, Int64 and Int are all represented using the same Int# type which

is always equal to the word width of the machine. We address this problem in the Section

6.4. Currently we shall take the example of Float which is defined as

1 data Float = F# Float#

and discuss the support of vector instructions for Float# and the various other

primops around it. Apart from the primtypes listed in Figure 6.4 there are also the

following :

32

Table 6.1: Prim Types

GHC PrimTypes

Array#
SmallArray#
ByteArray#

MutableByteArray#
ArrayArray#

MutableArrayArray#
Addr#

MutVar#
TVar#
MVar#
State#
Proxy#

There are a number of other primtypes like Compact#(to represent compact normal

forms) and a huge collection pointer primtypes, but for most of the discussion in this

report we deal with the primtypes in Figure 6.4. The library lift-vector does deal with

the primtypes like Array# or ArrayArray#3 , however we choose to interact with the array

types via a higher level library like vector4.

6.3 Adding a sample vector instruction to NCG

In this entire section we shall demonstrate the changes necessary in GHC to ac-

commodate a sample vector instruction. But initially, we change our context from the

internals of GHC, to talk a little bit about our target architecture and an example in-

struction supported on that architecture.

6.3.1 The broadcast operation

Before we take a walk-through of the source code changes in the code generation

pipeline to add a vector primop, in this section we will take a sample broadcast operation,

and talk a little about the semantics of the operation. We discussed a superclass of

broadcast in Section 5.1.3 of the IHRC compiler, called scatter, which is a common pattern

in parallel computing.

There are a multitude of SIMD operations, spread across a number of micro-architectures

and specialised domain specific instructions. We begin by picking the AVX family of SIMD

3array of arrays
4http://hackage.haskell.org/package/vector

33

instructions. AVX stands for Advanced Vector Extensions which was introduced with the

Intel Sandy Bridge5 micro-architecture introduced in 2011. The AVX family introduced

sixteen 256-bit wide YMM registers. Most modern generation of Intel processors like Core

- i3, i5, i7 are descendents of the Sandy Bridge micro-architectures. We run our experi-

ments on a Macbook Pro 13” with a Core-i5 second generation processor. As discussed in

the previous section we hope to apply the operation on an XMM register. In the Sandy

Bridge micro-architecture, an XMM register is represented as the lower 128-bits of a YMM

register.

Figure 6.5: An XMM and YMM register

As we can see in Figure 6.5 the lower 128-bit of the YMM register is called an XMM

register. Any operation on the XMM registers would involve zeroing out the upper 128-bit

of the YMM register. Now we want to apply the broadcast operation, to broadcast four 32

bit floats to one XMM register. A broadcast operation can be demonstrated using Figure

6.6.

Figure 6.6: Broadcasting a float to an XMM register

Note the upper 32-bits of the YMM register has been zeroed out. The x86 instruction

which provides us this operation is VBROADCASTSS. The syntax for the operation is,

1 VEX.128.66.0F38.W0 18 /r VBROADCASTSS xmm1, m32

5codename for the second generation of Intel Core (i3, i5, i7) processors

34

The string before the VBROADCASTSS refers to the encoding scheme of the instruc-

tion. Each of these string packs details such as alignment information, scale factor and

other information relevant for assembly programmers. For the brevity of the report, we

encourage the interested reader to find more details about the encoding scheme from the

Intel Instruction manuals [Set12]. The relevant part of the notation for us is the following,

1 VBROADCASTSS xmm1, m32

2 ^ ^ ^

3 | | |

4 operator | source

5 destination

6.3.2 Adding vector primops and primtypes

We switch back our context now, to talk about the changes necessary in the GHC

source tree. The vector attributes in the file compiler/prelude/primops.txt.pp is de-

fined as a list of 3-tuples, which are of the form,

< ELEM TY PE, SCALAR TY PE,LENGTH >

ELEM TYPE : the type of the elements in the vector eg : Int8

SCALAR TYPE : the scalar type used to inject to/project from vector element eg:

INT8

LENGTH : width of the vector

ELEM TYPE and SCALAR TYPE were not kept the same because to operate

using a scalar value on a vector whose elements are of type Int8, we use Int#. This

is part of the initial design of vectors as proposed by Mainland et al, however after the

changes made in Section 6.4 they effectively become the same.

For our discussion we take the example of the Float type which is backed by the

Float# primtype. We have added the support for working with XMM registers which are

128-bits wide. So each XMM register can hold four 32-bit floats. So, the 3-tuple we are

concerned about is < Float, F loat#, 4 >.

The utils/genprimcode parser, parses the vector and emits the following three

types

35

• FloatX4#

• Float#

• (# Float#, Float#, Float#, Float# #)

Of the three types generated the first type is the underlying vector type which is a

128-bit wide XMM register capable of holding four raw floats. As these are strict unlifted

types, they refer to the actual vector value or register rather than a pointer, pointing to

a region of memory. A 128-bit XMM vector register holds strict unlifted scalars and not

their lifted version.

The second element plainly indicates the kind of scalar element that this vector shall

hold. A point to be noted is that all of the vector types are strongly typed and the type

annotations remain throughout the compilation pipeline until the STG representation.

Though STG onward, the virtual STG registers take the place of the data types but the

type annotations remain throughout the end of the compilation pipeline. This strong

typing of intermediate representation throughout a complex pipeline of changes, makes

debugging and correctness substantially easier.

The third element is a tuple type for the projection and injection of the scalars

to the vectors. Specifically it is an unboxed tuple. An unboxed tuple, represented by

(#e1, e2, ..en#), is generally used for functions which needs to return multiple values.

Unboxed tuples are different from ordinary tuples in Haskell. An ordinary tuple(from

Data.Tuple) is syntactic sugar for,

1 data Tuple2 a b = Tuple2 a b

2 data Tuple3 a b c = Tuple3 a b c

On the other hand an unboxed tuple does not have any specific runtime representa-

tion in the heap. The values inside an unboxed tuple are either stored on registers or they

spill to the stack. They are never allocated on the heap. This was a surprising discovery

that we stumbled upon, which is not documented anywhere in GHC.

GHC Remark

Unboxed tuples are a compile-time construct! They do not have any runtime rep-

resentation in the heap.

36

However, to work with broadcast operation of AVX family we don’t need to deal

with unboxed tuples currently. So the front end of the broadcast primop that we add to

compiler/prelude/primops.txt.pp looks like this:

1 primop VecBroadcastOp "broadcast#" GenPrimOp

2 SCALAR -> VECTOR

3 { Broadcast a scalar to all elements of a vector. }

4 with vector = ALL_VECTOR_TYPES

The line with vector = ALL VECTOR TYPES refers to the list of 3-tuples that we

explained before. We have a separate parser to generate these function because there are

a large number of data types and corresponding vector data types that we have to map

between. Upon parsing the utils/genprimopcode code generator, generates the following

function among others,

1 broadcastFloatX4# :: Float# -> FloatX4#

This function gets generated as part of the GHC.Prim virtual module, which is re

exported via the GHC.Exts module which we shall use in all of our wrapper libraries as

well as tests. Additionally the parser also generates an additional datatype declaration

file6 while bootstrapping the compiler which declares the type:

1 data PrimOp

2 =

3 | VecBroadcastOp

4 | -- other vector primops

6the datatype declaration file is created by the stage 0 compiler. Refer the GHC remark for more details
on the stages of bootstrapping

37

GHC Remark

The bootstrapping process of the GHC compiler happens in three stages.

• Stage 0 is the GHC you have installed. The ”GHC you have installed” is also

called ”the bootstrap compiler”.

• Stage 1 is the first GHC we build, using stage 0. Stage 1 is then used to build

the packages.

• Stage 2 is the second GHC we build, using stage 1. This is the one we normally

install when you say make install.

• Stage 3 is optional, but is sometimes built to test stage 2.

6.3.3 Changes in Cmm and the STG→CMM bridge

The changes in the above section, would expose the function broadcastFloatX4#

in the GHC.Prim module. However let us assume in a sample program we call this function

we encounter the following:

1 -- assume this is defined inside a well typed Haskell 2010 function

2 brodcastFloatX4# 1.5#

3

4 -- compiling the above we get

5 "The native code generator does not support vector

6 instructions. Please use -fllvm."

The above error message is emitted from the depths of the native code generator. We

initially need to make changes to some very fundamental Cmm data types. Starting with

the compiler/cmm/CmmMachOp.hs file which defines all the essential machine operations,

which we can map a GHC primop to. There are primarily two crucial machine operation

types. MachOp represents machines operations like addition, substraction, multiplication

which can be reasonably delegated to the native code generator, whereas CallishMachOp

type represents certain specialised operations like barriers, memcpy, memset etc, which

needs to be implemented as a foreign call.

38

We saw in Section 6.3.1 that there is a direct broadcast operation supplied by x86

instruction set. So we make our changes in the MachOp type.

1 data MachOp =

2 -- a number of machops constructors possible in x86

3 | MO_VF_Broadcast Length Width -- Broadcast a scalar into a vector

4

5 deriving(Eq, Show)

6

7 type Length = Int -- no of elements of the vector

8

9 -- width of each individual scalar

10 data Width =

11 W8

12 | W16 | W32 | W64

13 | W80 -- Extended double-precision float,

14 -- used in x86 native codegen only.

15 | W128

16 | W256

17 | W512

18 deriving (Eq, Ord, Show)

The format of the data constructor is MO V F Broadcast 4 W32, where the Length

is the total number of elements in the vector and the Width type is the width of each scalar

element that we are broadcasting. With the addition of the broadcast MachOp type we shift

our attention to the STG→ Cmm bridge, which converts an STG expression to Cmm. The

most important function is the emitPrimOp function in the compiler/cmm/StgCmmPrim.hs

file.

1 emitPrimOp :: DynFlags

2 -> [LocalReg] -- where to put the results

3 -> PrimOp -- the op

4 -> [CmmExpr] -- arguments

5 -> FCode ()

39

The FCode is a reader, writer and state monad that is plumbed through the STG→Cmm

code generator. This monad takes care of the local bindings in scope, the continuation

to return to and other similar information before emitting a structure like a control flow

graph. We don’t need to modify anything in this plumbing, however we had to extend the

CmmExpr type to add support for vector literals.

1 data CmmExpr

2 = CmmLit CmmLit -- Literal

3 | CmmLoad !CmmExpr !CmmType -- Read memory location

4 | CmmReg !CmmReg -- Contents of register

5 | CmmMachOp MachOp [CmmExpr] -- Machine operation (+, -, *, etc.)

6 | CmmStackSlot Area {-# UNPACK #-} !Int

7 -- addressing expression of a stack slot

8 -- See Note [CmmStackSlot aliasing]

9 | CmmRegOff !CmmReg Int

10

11

12 data CmmLit =

13

14 | CmmVec [CmmLit] -- Vector literal

We specifically need vector literals for the broadcast operation. There is no machine

level concept for vector literals. Vectors are plainly a combination of multiple scalars

residing in a register. However the Cmm expression that we want to emit for our broadcast

operation looks like below:

1 _c1PG::Fx4V128 = <0.0 :: W32, 0.0 :: W32, 0.0 :: W32,

2 0.0 :: W32>; // CmmAssign

3 _c1PH::Fx4V128 = %MO_VF_Broadcast_4_W32(_c1PG::Fx4V128,

4 1.5 :: W32); // CmmAssign

Listing 1: The Cmm for broadcast

The first statement represents a vector literal. However a natural question arises,

40

what is the necessity of the first expression. Why can’t we have a simpler Cmm expression

like:

1 _c1PH::Fx4V128 = %MO_VF_Broadcast_4_W32(1.5 :: W32); // CmmAssign

The reason we cannot do the above, is because of the semantics of the Cmm lan-

guage. Although Cmm resembles a high level language in its features and syntax, we

should not forget that it is primarily a low level assembly language equivalent which op-

erates with registers. Each of the operands that we see are registers (Cmm has an infinite

supply of typed registers), and it is not possible to allocate a broadcast operation to a

register without initialising it. Although we would be able to generate a sane assembly

instruction from the second expression as well, the register allocator of Cmm has a liveness

analysis pass which would not allow the expression to pass. We shall talk about liveness

analysis of registers briefly in the next section.

The changes described in this section are sufficient to emit the Cmm expression

in Listing 1 from the emitPrimOp function. Next we shall see how we parse the Cmm

expression in the native code generator to actually generate x86 assembly instructions,

after we finish discussing about liveness analysis.

6.3.4 Liveness analysis

When working with intermediate representations in compilers, the assumption is

always to take a large number of temporary variables and store all of them in registers. In

reality, most RISC machines have a limited number of registers. We discussed in Section

6.3.1 that the Intel Sandy Bridge architecture has only sixteen vector registers. Similarly

the number of general purpose registers are also limited and the compiler tries to optimise

its usage.

The cmmLocalLiveness function in the source file compiler/cmm/CmmLive.hs, runs

a liveness analysis to check which registers are live and does not allow us to enter a control

flow block without initialising a register(initialisation is the start of the register lifetime).

The formal definition of a live variable is,

We say that variable v is live at a statement n if there is a path in the CFG from

this statement to a statement m such that v ∈ use[m] and for each n ≤ k < m :

v 6∈ def [k]. That is, there is no assignment to v in the path from n to m.

41

The understanding of liveness is essential because liveness constrains the definition of

a number of Cmm expressions (not very much unlike broadcast) as well as the optimisation

passes running in Cmm depends on it.

6.3.5 Changes in the NCG

The GHC native code generator supports SPARC and PPC instruction sets apart

from x86. We choose to concentrate our efforts on the x86 backend. Almost the majority

of the code that we have written, is distributed in the bowels of the code generator. There

are a number of helper functions as well as new data types that we have added for the

vector support. Without going into the nitty gritties we mention the major types where

we need to make the changes.

The Instr type in the file compiler/nativeGen/X86/Instr.hs defines the data

constructors for all the x86 instructions. So our changes there looks like this,

1 data Instr =

2

3 | VBROADCAST Format AddrMode Reg

Listing 2: Changes in the Instr data type

where the Format type decides the suffix to be attached with the instruction. In

x86 ss suffix is used for single precision float, while sd is used for double precision floats.

Similarly there are suffixes for each format like 8-bit integers and other types. Next, the

Reg type is defined like this,

1 data Reg

2 = RegVirtual !VirtualReg

3 | RegReal !RealReg

4 deriving (Eq, Ord)

5

6 data RealReg

7 = RealRegSingle {-# UNPACK #-} !RegNo

8 | RealRegPair {-# UNPACK #-} !RegNo {-# UNPACK #-} !RegNo

9 deriving (Eq, Show, Ord)

10

42

11 data VirtualReg

12 = VirtualRegI {-# UNPACK #-} !Unique

13 | VirtualRegHi {-# UNPACK #-} !Unique -- High part of 2-word register

14 | VirtualRegF {-# UNPACK #-} !Unique

15 | VirtualRegD {-# UNPACK #-} !Unique

16 | VirtualRegSSE {-# UNPACK #-} !Unique

17 deriving (Eq, Show)

The RealReg type refers to the real machine registers like %rax, whereas the VirtualReg

type allocates virtual registers which are eventually mapped to the RealReg or spilled to

the stack. The final data constructor VirtualRegSSE7 was added to indicated the vector

register and some changes were made in the linear register allocator algorithm to allocate

XMM registers. Finally the AddrMode type in Listing 2 refers to a memory address or

immediate value.

Apart from the compiler/nativeGen/X86/Instr.hs file, the pretty printer is mod-

ified, which actually prints (or emits) the assembly instruction. The pretty printer uses

the Format type to understand the type of the register and other information from

the register allocator to print the appropriate register. The bulk of the code actu-

ally parsing the Cmm expressions and translating them into assembly resides in the file

compiler/nativeGen/X86/CodeGen.hs of the source tree. There are also a number of

other non-trivial code changes which involve the data and newtype declaration of vector

types. Interested reader are encouraged to study the source code8 to understand the finer

engineering details.

After finally modifying the pretty printer we can tackle the logic of the assembly

instructions. Corresponding to the Cmm expression in Listing 1, the first statement of

initialising a vector with all zeroes can be achieved by xor ing the register with itself. And

after we have initialised the vector register we can simply emit the broadcast operation

by loading the literal as a memory address and broadcasting it in the zeroed out register.

So, in this way after finally emitting the assembly, let us look at the metamorphosis

that the original Haskell operation undergoes in each step.

7the name includes SSE, the same data constructor is used for AVX registers as well
8source code available at https://github.com/Abhiroop/ghc-1/tree/wip/simd-ncg-support

43

1 broadcastFloatX4# 1.5#

1 [LclId] =

2 [] \u []

3 case broadcastFloatX4# [1.5#] of sat_s1M1 {

4 __DEFAULT -> ...}

1 _c1PG::Fx4V128 = <0.0 :: W32, 0.0 :: W32, 0.0 :: W32,

2 0.0 :: W32>; // CmmAssign

3 _c1PH::Fx4V128 = %MO_VF_Broadcast_4_W32(_c1PG::Fx4V128,

4 1.5 :: W32); // CmmAssign

1 xorps %xmm0,%xmm0

2 movss _n1PZ(%rip),%xmm1

3 vmovups %xmm0,%xmm0

4 movups %xmm1,(%rsp)

5 vbroadcastss (%rsp),%xmm0

6 .

7 .; other instructions elided

8 .

9 _n1PZ:

10 .byte 0

11 .byte 0

12 .byte 192

13 .byte 63

Listing 3: Broadcast in Haskell 2010, STG, Cmm and x86 assembly respectively

6.3.6 Sinking pass

We mentioned while discussing Figure 6.1 that the sinking pass, is an important

compiler optimisation which affects the form of multiple Cmm expressions. This is partic-

ularly observable in the packing operation of vectors. If we take the example of packing

four floats into a vector type,

1 packFloatX4# :: (# Float#, Float#, Float#, Float# #) -> FloatX4#

2

3 -- eg:

4 packFloatX4# (# 4.5#,7.8#,2.3#,6.5# #)

44

The corresponding Cmm expression that we emit for the packing operation is given

below,

1 _c1Om::Fx4V128 = <0.0 :: W32, 0.0 :: W32, 0.0 :: W32,

2 0.0 :: W32>; // CmmAssign

3 _c1On::Fx4V128 = %MO_VF_Insert_4_W32(_c1Om::Fx4V128, 4.5 :: W32,

4 0 :: W32); // CmmAssign

5 _c1Oo::Fx4V128 = %MO_VF_Insert_4_W32(_c1On::Fx4V128, 7.8 :: W32,

6 16 :: W32); // CmmAssign

7 _c1Op::Fx4V128 = %MO_VF_Insert_4_W32(_c1Oo::Fx4V128, 2.3 :: W32,

8 32 :: W32); // CmmAssign

9 _c1Oq::Fx4V128 = %MO_VF_Insert_4_W32(_c1Op::Fx4V128, 6.5 :: W32,

10 48 :: W32); // CmmAssign

This appears like a needlessly awkward representation. On the left hand side of

line 1 we have a zeroed out vector register, each of the four insert operations take the

index of the vector register where the element needs to be packed. A much more natural

representation would be to take the original register c1Om and pack these elements in the

respective indices of the vector. However we load the first element to the first 32-bits of

c1Om and move the value to c1On and continue to thread down each register with a pack

followed by a move. This representation is owing to the variable sinking pass which is

turned off by default in GHC. When the optimisation is switched on the Cmm becomes,

1 _s3yj::Fx4V128 = %MO_VF_Insert_4_W32

2 (%MO_VF_Insert_4_W32

3 (%MO_VF_Insert_4_W32

4 (%MO_VF_Insert_4_W32(<0.0 :: W32, 0.0 :: W32,

5 0.0 :: W32, 0.0 :: W32>,

6 4.5 :: W32,

7 0 :: W32),

8 7.8 :: W32, 16 :: W32),

9 2.3 :: W32, 32 :: W32),

10 6.5 :: W32, 48 :: W32); // CmmAssign

45

In the above representation all the intermediate variables have been sunk and all

the function calls inlined to avoid wasteful register spilling. This was an example, there

are a number of other instructions including all the arithmetic operations, whose Cmm

representations have been dictated by the variable sinking optimisation pass.

6.3.7 Reflection

In this entire section we have taken a sample vector instruction of broadcast and

shown how to implement it across the full code generation pipeline. We have intentionally

taken a simpler instruction as an example. For a number of operations like shuffling

there are no direct corresponding x86 instructions and we have to design an optimal

set of assembly instructions by combining other operations. The various optimisation

passes like variable sinking, liveness analysis etc also contribute to the complexity of the

implementation. Interested readers are encouraged to study the modified GHC source

tree9 for further details on the implementation.

6.4 Supporting smaller integer widths in GHC

A number of modern day software, tend to operate on large datasets containing data

of smaller width. For instance, audio applications extensively use 16-bit data. Similarly

the graphics industry operates on 8-bit data frequently. With the rise of machine learning

algorithms, 8-bit and 16-bit floating point numbers have been introduced specifically for

deep neural network algorithms [Gup+15]. When operating on microprocessors with 32-

bits or 64-bits word size, the upper bits of the registers remains unused and they continue

to consume unnecessary power.

SIMD registers would be particularly beneficial for these applications, as most of

these applications tend to be parallel in nature. A 128-bit Xmm register can fit sixteen

8-bit integers and theoretically provide 16x speedups. However, as discussed in Figure

6.4 GHC defines all signed and unsigned variants of integers as wrappers over the same

machine dependent primop.

1 data {-# CTYPE "HsInt8" #-} Int8 = I8# Int#

2

3 data {-# CTYPE "HsInt16" #-} Int16 = I16# Int#

9source code available at https://github.com/Abhiroop/ghc-1/tree/wip/simd-ncg-support

46

4

5 data {-# CTYPE "HsInt32" #-} Int32 = I32# Int#

6

7 data {-# CTYPE "HsInt64" #-} Int64 = I64# Int#

Similarly for the unsigned Word types, they are all represented underneath by the

same machine dependent Word# primop. Both Int# and Word# have width equal to the

word size which is 64-bits for a 64-bit machine. A major part of this dissertation was spent

in enabling the support for Int8#, Word8#, Int16#, Word16#, Int32# and Word32#.

This change makes each of the wrapper data type definitions much more precise, and

allows us to work with smaller width data types in SIMD.

The process of adding vector instruction support for integers is not very different

from what we discussed in the previous section. The crucial part is the new integer

primtypes and their respective primops which we shall discuss briefly in the following

sections.

6.4.1 Adding the new runtime representations

We want to add a new runtime representation for each of the small width prim-

types. However, to add a new runtime representation we need to understand the kinding

mechanism of GHC.

With the introduction of levity polymorphism [EP17] in GHC 8.0, the fundamen-

tal kinding mechanism of GHC was modified. Prior to version 8.0, GHC supported a

subkinding10 mechanism with the kind OpenKind being the parent of the kinds ”*” and

”#”

1 OpenKind

2 / \

3 / \

4 * #

5

6 -- "This is a gross hack" - Simon Peyton Jones

10subkinding is a play on the word subtyping which implies a relation between types via a notion of
substitutability

47

This subkinding mechanism was the cause of a number of spurious and hidden bugs.

There was no notion of separate runtime representation for the lifted and unlifted types.

GHC 8.0 repaired that by defining a type Levity which was defined as data Levity =

Lifted | Unlifted and defined the ”*” and ”#” kinds using the type Levity. Although a

sound design was proposed in the original paper [EP17], the final implementation in GHC

differed substantially from the paper. The final version of runtime representation which

currently exists in the GHC mainline is not documented in any publication, but the source

code looks like this,

1 type * = TYPE 'LiftedRep

2

3 type # = TYPE 'UnliftedRep

4

5 -- TYPE :: RuntimeRep -> *

6

7 data RuntimeRep = LiftedRep

8 | UnliftedRep

9 | IntRep

10 | WordRep

11 | ...

While most of the above makes sense, the tricky portion is understanding the magical

TYPE which itself maps a RuntimeRep to the kind ”*”. For more details on this, the

interested reader is directed to the paper by Eisenberg et al [EP17].

We are ourselves primarily concerned with the RuntimeRep type and extending it.

Currently something like Int# is expressed as

1 Int# :: TYPE 'IntRep

We hope to introduce runtime representations for all the sub-word11 size types as

well as a runtime representation for vectors. Hence we modify the RuntimeRep with the

new data constructors for vectors as well as the sub-word types. (Note: the RuntimeRep

11we use sub-word to denote data types whose size is less than 64 bits

48

for just the vector type i.e VecRep was added by Richard Eisenberg and not the author of

this report)

1 data RuntimeRep

2 = LiftedRep

3 | UnliftedRep

4 | VecRep VecCount VecElem -- ^ a SIMD vector type

5 | Int8Rep -- ^ signed, 8-bit value

6 | Int16Rep -- ^ signed, 16-bit value

7 | Int32Rep -- ^ signed, 32-bit value

8 | Int64Rep -- ^ signed, 64-bit value (on 32-bit only)

9 | Word8Rep -- ^ unsigned, 8-bit value

10 | Word16Rep -- ^ unsigned, 16-bit value

11 | Word32Rep -- ^ unsigned, 32-bit value

12 | Word64Rep -- ^ unsigned, 64-bit value (on 32-bit only)

6.4.2 Changes in the typechecker

In the previous section we added the RuntimeRep data constructors for all the sub-

word sized data types. Now we show how to allocate a type to each of these data types.

A type in the typechecker is defined as an algebraic data type Type

1 data Type

2

3 =

4 | TyConApp

5 TyCon

6 [KindOrType]

7

8

9 deriving Data.Data

This type is one of the central tenets of the GHC typechecker. The most important

constructor for us is the TyConApp constructor which allows us to define both data and

49

newtype data constructors. We have to represent our new RuntimeReps as type construc-

tors.

GHC has multiple categories of entities:

• Wired-in things - GHC knows everything about these

• Known-key things - GHC knows the name, including the Unique, but not the defi-

nition

• Orig RdrName things - GHC knows which module it’s defined in

The Int8# and friends are ”wired in things” and they are wired by allocating unique

numbers to them and creating a data constructor using those unique numbers. Once we

have the data constructors we can create a Type by composing these two helper functions

which are already available in GHC.

1 promoteDataCon :: DataCon -> TyCon

2

3 mkTyConTy :: TyCon -> Type

There are some other minor engineering details around wiring in our subword type

constructors in the type checker which are available in our second modified branch of

GHC12.

6.4.3 Extending and narrowing registers

We discussed about adding a new runtime representation and the changes in the

typechecker. The other changes that we do are centred around the code generator. Most

of the ground work on adding the primops like addition, subtraction, etc, around each of

the sub-word size primtypes is quite similar to what we have discussed in Section 6.3.

The novel changes in the code generator involves the extending and narrowing of

the Cmm registers for supporting the new primtypes . Consider passing a small (< word

width) primitive like Int8# to a function through a register. It is actually non-trivial to

do this without extending/narrowing.

12https://github.com/Abhiroop/ghc-1/tree/int8

50

– Global registers are considered to have native word width (i.e., 64-bits on x86-64)

at the Cmm level, so the Cmm linter wouldn’t allow us to allocate an 8-bit or 16-bit

register to it

– The above holds true for the LLVM IR as well

– Lowering gets harder since on x86-32 not every register exposes its lower 8 bits (e.g.,

for %eax general purpose register we can use %al, but there isn’t a corresponding

8-bit register for %edi). So we would either need to extend/narrow anyway, or

complicate the calling convention.

So the general solution chosen was to always extend every parameter smaller than

native word width in the in the Cmm and then truncate it back to the expected width

before code generation.

Note that we do this entire extending-narrowing of registers in Cmm by adding

a new MO XX Conv data constructor to the Cmm machine operation type (MachOp). This

avoids requiring zero-/sign-extending - it’s up to a backend to handle this in a most efficient

way (e.g., a simple register move in the native code generator). We have additionally added

primops for manually extending and narrowing the registers in our source code,

1 extendInt8# :: Int8# -> Int#

2 narrowInt8# :: Int# -> Int8#

The similar was added for the other sub-word size data types as well.

6.5 Example: Polynomial evaluation using GHC’s vector types

In this section we take a look at an example which uses the low level vector types

that we have added, to parallelise a sequential program. The specific example we choose is

polynomial evaluation. Polynomials exhibits parallelism in evaluating each of its individual

terms. Consider the following polynomial:

7x4 + 8x3 + 3x2 + 2x + 1

This polynomial can be visualised as:

51

7 * x * x * x * x

+ 8 * x * x * x

+ 3 * x * x

+ 2 * x

+ 1

Given the above structure of polynomial evaluation we can pack the first two columns

into vectors and save the cost of three multiplication operations. So vectorisation of the

above would look like the following:

Figure 6.7: Vectorised polynomial evluation

While this saves us the cost of three multiplication operations, the cost of packing

and unpacking are far higher then the x86 multiplication instruction which happens in

the order of nanoseconds. To compensate the cost and see an actual benefit we need to

evaluate polynomial of the order of 512 and higher. The actual code for evaluation using

the vector types is given in Listing 4:

The program looks very different from a general declarative Haskell program. It

accepts the value for which the polynomial has to be evaluated as a Float type. The

coefficients of the polynomial are represented as a list . So a polynomial like 7x4 + 8x3 +

3x2 + 2x + 1 would be represented as [7,8,3,2,1]. In the cases of a missing term in the

polynomial, we specify 0 in the list. So, x5 + 1 is represented as [1,0,0,0,0,1]. Our

contributions to the API should be visible in the form of the following functions:

• packFloatX4#

• broadcastFloatX4#

• unpackFloatX4#

• timesFloatX4#

In the program we have defined a separate helper function splitEvery for splitting

the list into sublists of given size. The sublist size would be equal to the width of the

52

1 evalPolyVec :: Float -> [Float] -> Float

2 evalPolyVec value coeffs = go (splitEvery 4 coeffs) (length coeffs)

3 where

4 go [[x]] _ = x

5 go (x:xs) len =

6 let [(F# a), (F# b), (F# c), (F# d)] = x

7 (F# val) = value

8 packed_coeff = packFloatX4# (# a, b, c, d #)

9 vec_val = broadcastFloatX4# val

10 step_length = len - sizeOfVec

11 in (go' packed_coeff vec_val step_length) + (go xs step_length)

12 where

13 go' pc _ 0 =

14 let (# a, b, c, d #) = unpackFloatX4# pc

15 in ((F# a) * value ^ 3) +

16 ((F# b) * value ^ 2) +

17 ((F# c) * value) +

18 (F# d)

19 go' pc v l =

20 let t = (timesFloatX4# pc v)

21 in go' t v (l - 1)

22

23 splitEvery _ [] = []

24 splitEvery n list = first : (splitEvery n rest)

25 where

26 (first, rest) = splitAt n list

Listing 4: Vectorised polynomial evaluation.

vector register that we want to pack the scalars into. The rest of the logic, though slightly

verbose, is quite simple. We are effectively iterating over the list of polynomial coefficients

and packing and multiplying each component. In the final iteration we complete the

evaluation by using the scalar operators.

While Listing 4 parallelises our program using SIMD evaluation, the parallelism

comes at the cost of compromising the declarative nature of Haskell. And our primary

goal is to aim for declarative parallel programming. The lift-vector library introduced in

the following chapter will attempt to mitigate this problem to an acceptable extent. In

Chapter 10 on evaluations we will present the same program written using the lift-vector

library to make it more high level and declarative.

53

6.6 Contributions and Reflection

Throughout this chapter we discussed the low level details of how we made changes

in the code generation pipeline. The chapter began with Figure 6.1 demonstrating the

parts of the pipeline where our changes reside. Over the course of the past few sections

we have tried to give a brief overview about the new datatypes that we introduced in the

pipeline and the overall engineering efforts involved in adding vector instruction support to

GHC. In the last section we have also presented a brief example of polynomial evaluation

using the new vector types of GHC.

For the code generator, we took a sample vector operation and showed how we are

currently generating its corresponding x86 assembly. Most of the other operations would

involve similar changes in the code generator. All of our changes have been heavily code

reviewed and all the changes are in the pipeline for the GHC version 8.9 release. Here is

a list of what we can expect in GHC 8.9 and future releases,

• Support for Int8#, Word8#, Int16#, Word16#, Int32# and Word32# in GHC 8.9.

The proposal13 for small primitive types had been accepted by the GHC steering

committee a year ago. Simon Marlow, the chief architect of nearly the entire backend

of GHC has stated the following about this change,

This needs to happen, the only reason we didn’t do this earlier was that

we sneakily avoided needing real sized integral types by adding the narrow

primops so that we could implement all of Data.Int and Data.Word using

Int# and Word#. Once we have real sized types, we could re-implement

Data.Int and Data.Word using sized primops and kill the narrow primops.

(I realise this isn’t part of this proposal, but it’s a nice cleanup).

This project has provided a firsthand implementation of the entire GHC proposal

which was initially divided into three parts over a period of a year. This will be one

of the first contributions to be merged into GHC 8.9

• Support for FloatX4# and DoubleX2#. These two primtypes have been implemented

in their entirety and the groundwork for supporting all the other vector types has

been laid in the parser. These two primops are in line to be merged with GHC 8.9

or latest by GHC 9.0

13https://github.com/ghc-proposals/ghc-proposals/pull/74

54

• NCG backend for vectorisation. The entire native code generator backend changes

supporting all arithmetic operations as well as the packing and unpacking operations

have been heavily reviewed and scrutinised and shall hopefully be merged to the

GHC mainline version 9.0

This brings us to the end of most of our GHC related efforts. Primarily, we have

designed the substrate on top of which high level libraries for vectorisation can be built.

Also the control flow graph of GHC is now able to understand Cmm vector machine

operations which opens the door for us to implement automatic vectorisation. Over the

next few sections we address, how we can use the vectorised NCG backend of GHC to

build high level libraries and frameworks for parallel programming.

7. LIFT-VECTOR: A LIBRARY FOR VECTORISATION IN

HASKELL

In this chapter we talk about the lift-vector14 library which provides higher order, polymor-

phic SIMD functions for vectorisation. The focus of the library was to devise a polymorphic

front end API for vector programming.

7.1 An abstraction for vectors

The vector APIs that we have exposed till now, are entirely composed of unlifted

types. As of the last chapter, to access the SIMD capabilities of GHC one needs to

have a detailed understanding of the compiler internals as well as the cost of each vector

operation. Most general Haskell programmers are not aware or educated about unlifted

types and they generally exist in the bowels of the compiler. Also exposing someone to

the details of the low-level instructions from the backend would effectively render a highly

declarative language like Haskell to decay into the leaky abstraction bound imperative

language territory.

One of the best ways to tackle this problem is to make the compiler intelligent

enough and allow it to auto-vectorise. However automatic vectorisation is a full blown

research question of its own and it would take a much more thorough and time consuming

approach to integrate it . Instead what we attempt is to build a library, which though not

as intelligent as auto-vectorisation would at-least provide library authors a starting point

to work with GHC without delving into the details of the compiler.

7.1.1 Typeclasses and type-families to the rescue

A strong focus is laid on polymorphism, because the multitude of possible vector

operations and the various ways of packing and unpacking them is hard to remember and

is an unnecessary, low-level detail. The primary source of ad hoc polymorphism in Haskell

is through type classes. We have briefly discussed about type classes in Section 3.

We take the example of the packing operation on vectors to abstract over. Currently

we have the following,

1 packFloatX4# :: (# Float#, Float#, Float#, Float# #) -> FloatX4#

14https://github.com/Abhiroop/lift-vector

55

56

2 packDoubleX2# :: (# Double#, Double# #) -> DoubleX2#

To start with, we can easily wrap over the Float# types as well as create a general

wrapper around FloatX4#. However, do note it requires a non-trivial amount of changes

in the NCG to support datatype wrappers over the vector primtypes. All of that work

has been included in our modified branch of GHC. So, we can now declare,

1 data FloatX4 = FX4# FloatX4#

2

3 packFloatX4 :: (Float, Float, Float, Float) -> FloatX4

4 packFloatX4 (F# x1, F# x2, F# x3, F# x4) = FX4# (packFloatX4# (# x1, x2, x3, x4 #))

Now that, we have been able to hide the unlifted types, we can imagine for the

various widths of the register as well as the multiple datatype like Int, Float, Double,

etc, we will have a large number of packing functions like these:

1 packFloatX4 :: (Float, Float, Float, Float) -> FloatX4

2 packDoubleX2 :: (Double, Double) -> DoubleX2

3 packInt8X16 :: (Int8, Int8, Int8, Int8, Int8, Int8, Int8, Int8,

4 Int8, Int8, Int8, Int8, Int8, Int8, Int8, Int8) -> Int8X16

5 packInt16X8 :: (Int16, Int16, Int16, Int16,

6 Int16, Int16, Int16, Int16) -> Int16X8

7 packInt32X4 :: (Int32, Int32, Int32, Int32) -> Int32X4

8 packInt64X2 :: (Int64, Int64) -> Int64X2

Listing 5: Changes in the Instr data type

And the above are just for XMM registers of 128-bit width. There are additional 256-

bit wide YMM registers as well as 512-bit wide ZMM registers, which implies six times

three which is eighteen functions for just packing. Now imagine there are additionally

unpacking, broadcasting, arithmetic, logic and other operations which could potentially

result in over two hundred functions. So if we observe Listing 5, it has a repetitive pattern

where it takes different types of tuples(either 2-tuple, 4-tupls, 8-tuples or 16-tuples) and

maps to the respective vector types. We can attempt to be polymorphic on the vector

type and define something like this:

1 class SIMDVector v where

57

2 packVector :: (???) -> v

The issue is the first argument of packVector is itself dependent on the final type

that it is mapping to. For a FloatX4 it is a 4-tuple of Floats, whereas for a Int8X16 it is

a 16-tuple of Int8s. The type is dependent on a type level constraint and to emulate this

class of dependent types, GHC supports associated types or type families [Cha+05]. Again

we provided a brief introduction to associated types in Section 3, though an interested

reader is encouraged to read the original paper by Chakravarty et al for more details.

Associated types hence allow us to modify the previous snippet of the SIMDVector

typeclass to:

1 class SIMDVector v where

2 type Elem v

3 type ElemTuple v

4

5 packVector :: ElemTuple v -> v

This allows us to define an instance for this typeclass while depending on the shape

of the tuples as well as their content. So we can write,

1 instance SIMDVector FloatX4 where

2 type Elem FloatX4 = Float

3 type ElemTuple FloatX4 = (Float, Float, Float, Float)

4 packVector = packFloatX4

We can use this technique to abstract over all the basic operations like packing,

unpacking, broadcasting, mapping, zipping, folding etc. This typeclass gives us the core

polymorphic operations for construction and deconstruction of vectors. At the same time

we choose to export only the polymorphic variants of our API while hiding the actual

implementations (like packFloatX4 etc).

Note when we mention mapping, zipping or folding, we are talking about simply

folding that vector type. So something like FloatX4 can be folded to a single Float using

a suitable folding function. However what about vectorisation over more powerful data

structures like lists and arrays? We address this in the next section.

58

7.2 Vectorised data structures

There are primarily two classes of data structures that we hope to divide this library

into,

• Immutable and purely functional data structures [Oka99]

• Mutable array based structures

Among the purely functional data structures, within the current time frame we could

only implement vectorised version of lists15. However we do hope to produce vectorised

version of trees and other purely functional structures which we detail in the section on

future work. We also discuss the about our implementation for vectorised arrays in this

chapter. However we first look at a general typeclass that we have designed to operate on

all vectorised data structures.

7.2.1 A typeclass for generic operations

We have attempted to devise a common set of operations which are applicable on

any vectorised data structure or container. It is accomplished by parameterizing our

typeclass over the container of type t. We expose general higher order functions which

are commonly applied on structures likes lists and arrays. The novelty lies in how each

of these functions operate on the containers. They process the elements inside the data

structure in chunks of size four or eight or sixteen and applies a function on each of these

chunks using vector operations. Let us have a look at this typeclass.

1 class (Num a, Num b) =>

2 ArithVector t a b

3 where

4 -- | The folding function should be commutative

5 fold :: (a -> a -> a) -> (b -> b -> b) -> b -> t b -> b

6 zipVec :: (a -> a -> a) -> (b -> b -> b) -> t b -> t b -> t b

7 fmap :: (a -> a) -> (b -> b) -> t b -> t b

Listing 6: The ArithVector typeclass

One of the first noticeable features of this type class is the fact that it is parameter-

ized over three parameters rather than one. GHC supports the concept of multi-parameter

typeclasses which allows us to define a relationship between types. Multi-parameter type

15which is quite ubiquitous in functional programming

59

classes were not part of Haskell 98 and currently they are available in GHC as a language

extension. Multi param typeclasses along with functional dependencies [Jon00] are almost

as expressive as type families. However, here we do not need to express any complex type

level constraint. We are operating on a uniform shape t of our data structure and multi

parameter type classes simply provides a way to be polymorphic over three parameters.

The parameter b is clearly the type of the elements that the container holds. So the

question arises then, what is the purpose of the type parameter a?

The scalar dribble problem : One of the issues when vectorising operations on

any container is the scalar dribble problem. The issue arises because of the width of each

of the vector registers are either 128-bits or 256-bits or 512-bits. So imagine if we are

packing 32-bit floats on a 128-bit wide Xmm register, we can manage to fit in four floats

in one of the registers. Now imagine we are operating on a list which contains eighteen

elements. We pack it in batches of four, so what happens to the last two elements? These

last two elements cannot be packed into a vector and even if we pack them with certain

garbage values in the upper 64-bits, the operation will be unnecessarily costlier owing to

the overhead of packing and unpacking. The remaining two elements contribute to what is

known as the scalar dribble. This name is because the final two elements will be operated

using scalar operators. The same problem arises on 256-bit wide or 512-bit wide registers

as well. It is demonstrated in Figure 7.1.

Figure 7.1: Demonstrating scalar ”dribble”

Owing to the scalar dribble problem, a consumer of the lift-vector library needs to

provide two functions to the library. First the vector function and secondly its scalar

analogue. So for instance, if we were adding all the elements in a vector list the consumer

would provide the addition function for vectors as well as the addition function for scalars.

60

This is precisely the reason for us parameterizing over the additional type parameter a.

In Listing 6 t is the container type, the second parameter a refer to the vector types like

FloatX4 while the third parameter b is for the corresponding scalar type Float.

Critique: While not the cleanest of designs, one of the pros of this typeclass is

the amount of polymorphism this brings to the table. Not only does the consumer, need

not know about the container type, they are also considerably oblivious to the vector

type being used underneath. We say considerably because to satisfy the typechecker the

consumer still needs to enter the corresponding vector type, however the operation itself

like + or * is still overloaded. In general it is difficult for the compiler to always assess

the domain specific advantage for a particular vector width type and instead of making a

half-hearted guess, we give the power to choose the vector width to the library author.

The visible cons are a case of a leaky abstraction, where a general programmer is

assumed to have knowledge of vector register width which is an extremely low level detail.

However, in the current iteration of the project this is the best trade-off that we could

choose. We hope to simplify the API in the future.

7.2.2 Vector Lists

The first class of containers that the ArithVector typeclass abstracts over is the

vector list which is a plain wrapper around lists. It uses newtype to wrap around lists,

which is simply a compile-time construct and doesn’t add to any runtime overhead.

1 newtype VecList a = VecList [a]

Currently the operations on vector lists are processed in chunks of size four (for

Floats) and two (for Doubles). None of the internal operations are exposed to the public

API except the to and from VecList functions. All general operations on VecLists are

carried out through the general combinators of folding, mapping and zipping. One of the

most useful abstractions over plain Haskell lists are Monoids. So can we vectorise monoidal

operations?

7.2.2.1 Why not a Semigroup or a Monoid?

Semigroups and monoids are an important class of abstraction which allows us to

apply associative operations on various structures combining them to a single value. They

are represented as:

61

1 class Semigroup a where

2 (<>) :: a -> a -> a

3

4 class (Semigroup a) => Monoid a where

5 mempty :: a

6 mconcat :: [a] -> a

If we look at each of the functions, we can see that the constraint is on the elements

of the list to be a monoid. Unfortunately most of the vector operations are on Ints,

Floats and Doubles and none of them form a Monoid. To form a monoid we need to

define an associative function combining the datatype. A general technique is to use a

wrapper structure like Sum a to denote an associative operation like addition and use that

as the combining operation for the monoid.

We should remember we are talking about the properties of the container. The

container can be monoid irrespective of the properties of the elements. Like a list is a

monoid. Similarly we can make a vector list a monoid as well. But almost all of our vector

operations are arithmetic operations. So even if vector list were to be a monoid, there is

nothing it would gain from being a monoid. It would simply be a wrapper over the list

monoid.

On the other hand a list can be container for String or IO or a multitude of other

types, each of which support the associative combining operation. Hence lists are monoids

but we choose not to make vector lists to be a monoid.

7.2.3 Vector Arrays

The second class of data structures that we work with are vectorised arrays. Arrays

are much more popular data structures for high performance computing. However, the in-

place mutation API of arrays are quite opposed to the fundamental principles of immutable

functional programming. Hence we provide a relatively functional API to work with arrays.

Not very much unlike vector lists, vector arrays are also wrappers around an existing

Haskell data structure. Here we use unboxed vectors. The vector16 package in Haskell is

unrelated to SIMD vectors. It is simply an alternate name for list like structures which are

backed by a mutable array underneath. The primary advantage of using a vector type is

16http://hackage.haskell.org/package/vector

62

the fact that it feeds of a powerful form of compiler optimisation known as Stream Fusion.

This was discussed in some length in Section 5.1.2.

The vector package provides a number of data types to work with but we have

chosen the variant of unboxed vectors. We have discussed about boxed and unboxed types

of Haskell in considerable detail in Section 6.2.1. In the case of boxed and unboxed vectors

the representation on heap would look like below.

Figure 7.2: An unboxed and boxed vector respectively

The additional pointers in a boxed vector reduces the efficiency. Owing to this

reason we choose to wrap over unboxed vectors. The representation of vector array that

we use is given below:

1 import qualified Data.Vector.Unboxed as U

2

3 data VecArray sh a = VecArray !sh (U.Vector a)

The powerful part of this representation is that we can represent two, three or any

possible higher dimensional arrays using this. This work is not novel in any way and it

is inspired from the research on the Repa library in Haskell [Kel+10], which introduced

the concept of shape polymorphism. However we have chosen to simplify the API of Repa

considerably. Repa uses a number of type family representations to choose between various

possible vector types and has a huge number of dependencies which we have removed.

Repa internally uses unboxed vector for reads while it uses mutable vector, which is

in turn backed by MutableArray, for writes. Unboxed vectors are great for O(1) reads but

even a single write creates a new vector which takes linear time. To compensate for that

mutable vectors provide O(1) writes by providing mutation inside the ST or IO Monad.

Internally Repa does an unsafeIO operation to facilitate every single write.

To keep our API relatively simple we did not introduce any monadic structures

there. We simply defer our writes by creating a linked list underneath for the various

63

operations like folding and finally convert the list to an array. This happens at O(n)

complexity and the entire write happens just once. Hence our simplification comes at the

cost of efficiency. We shall see in chapter 10 on evaluations how the absence of in-place

writes slows down the performance. For this chapter, our main aim is to demonstrate the

declarative and polymorphic nature of our API.

The shape polymorphism part nonetheless comes as a nice add-on on top of our

already existing polymorphic interface. Let us briefly discuss about how this relatively

simple looking representation can capture all the possible dimensions of an array.

7.2.3.1 Shape Polymorphism

The basis of shape polymorphism, as defined by Keller et al [Kel+10], is the fact

that the internal computer memory is essentially one dimensional and hence a similar

one dimensional structure can be used to encode any higher dimensional containers. For

instance, imagine we have a 3x5 two dimensional array. We lay out all the 3x5 = 15

elements linearly in the memory. When the consumer asks for the element at the position

(1,2) we find that it exists in 5 * 1 + 2 = 7th position from the beginning.

To capture the dimensions at the type level, they are represented using a type

constructor for zero and a snoc17 list. Hence the dimensions are represented like the

following:

1 data Z = Z

2 data tail :. head = !tail :. !head

3

4 type DIM0 = Z

5 type DIM1 = DIM0 :. Int

6 type DIM2 = DIM1 :. Int

7 type DIM3 = DIM2 :. Int

The polymorphism on the above is obtained by defining a typeclass which defines

all the standard operations that can be queried on the dimensions like rank, size etc. The

most important polymorphic function is the toIndex function which computes the actual

position of the element.

17snoc lists are opposite of cons lists. Refer to [Oka99] for more detail.

64

1 class Eq sh => Shape sh where

2 toIndex :: sh -> sh -> Int

3

4 instance Shape Z where

5 toIndex _ _ = 0

6 instance Shape sh => Shape (sh :. Int) where

7 toIndex (sh1 :. sh2) (sh1' :. sh2')

8 = toIndex sh1 sh1' * sh2 + sh2'

From the context of vectorisation, the beauty of the shape polymorphic API is that

it allows us to define a uniform abstract typeclass for every possible dimension of arrays.

Because the internal representation is a plain contiguous sequence of elements, we can

once again vectorise in chunks of 16, 4, 8 and 2 elements and the operations become

almost similar to working with lists. Also writing the internal vector functions for every

data structure involves a lot of tedious traversal patterns for each separate representation.

With the shape polymorphic API we have a uniform traversal pattern for all types of

arrays. This is a testament to the power of parametric polymorphism in Haskell.

7.3 Performance penalties

Throughout the entirety of this chapter we have spoken about the high level design

choices using typeclasses and type-families. However, in this part we would like to point

to some performance penalties which a high level abstraction brings with it.

Let us take an example from vector lists to demonstrate our point. We take the

example of the vectorised folding function over VecLists. Although the VecList type is

defined as a newtype wrapper around plain lists which doesn’t have any overhead, there

are number of other types which are adding to the overhead. For instance,

1 data Float = F# Float#

2

3 data FloatX4 = FX4# FloatX4#

4

5 packFloatX4 :: (Float, Float, Float, Float) -> FloatX4

65

6

7 unpackFloatX4 :: FloatX4 -> (Float, Float, Float, Float)

Each of the types and functions listed above are wrappers over lifted types. And any

computation involving lifted types involve pointers in the runtime, which adds on to the

performance overhead. The packing and unpacking involves additional costs. We discuss

about individual performances and timing in detail in Chapter 10.

Additionally there are certain hidden costs of working with the lifted vector types.

For instance take a look at these two snippets:

1 foldFloatX4 ::

2 (FloatX4 -> FloatX4 -> FloatX4)

3 -> (Float -> Float -> Float)

4 -> Float

5 -> VecList Float

6 -> Float

7

8 foldFloatX4 f g seed (VecList xs') = go seed (broadcastVector seed) xs'

9 where

10 go acc vec_acc [] = g (foldVector g vec_acc) acc

11 go acc vec_acc (x1:x2:x3:x4:xs) =

12 let op = f (packVector (x1,x2,x3,x4)) vec_acc

13 in go acc op xs

14 go acc vec_acc (x:xs) = go (g x acc) vec_acc xs

1 foldFloatX4 f g seed (VecList xs') = go seed xs'

2 where

3 go acc [] = acc

4 go acc (x1:x2:x3:x4:y1:y2:y3:y4:xs) =

5 let op = f (packVector (x1,x2,x3,x4)) (packVector (y1,y2,y3,y4))

6 in go (g (foldVector g op) acc) xs

7 go acc (x:xs) = go (g x acc) xs

66

Both of the above functions implement the same task of folding a vector list using

some commutative fold function. We don’t need to understand the entire functions, how-

ever in line no 6 of the second snippet the foldVector function actually unpacks a vector

and applies a folding function on it. And as we can see clearly the line no 6 is part of the

recursive call and it is called every time the loop runs.

On the other hand in line 10 of the first snippet the foldVector operation occurs

simply at the end of the list. Throughout the entire loop, unpacking happens just once. So

the intuitive guess would be that the first snippet should be much faster than the second

snippet. The number of packing operations are same for both of the them, so given the

same algorithm, the obvious winner should be the function with lesser unpack operations.

However surprisingly the second snippet is 2 to 3 times faster than the first snippet

depending on the length of the list! The surprising cause of the performance penalty in

the first case is not very clear, but we can speculate that the first snippet has to loop

while accessing the FloatX4 type accumulator in each loop. This access might be causing

the performance loss. Also the second snippet packs eight elements in each loop while the

first works with simple four elements at a time and uses the accumulator which could be

another possible cause.

As the cost model is such a mysterious and hidden aspect of vectorisation, we provide

an entire chapter to talk about a possible cost model for vectorisation in GHC.

7.4 Example: Demonstrating the lift-vector API

We provide an example of using the lift-vector library to operate on vector lists and

arrays and compare the API with plain Haskell lists. A number of other examples18 are

available in the source tree of the lift-vector library.

Let us consider the dot product of vectors , which initially does a one to one multi-

plication of every element in two vectors and then sums the results. Using a plain Haskell

list of floats, a dot product would be expressed as,

The above is a plain list based solution which consumes the list, one element at a

time. Now our solution using the lift-vector library would look like the following,

The solutions looks fairly similar to the one on plain lists. The only difference is

that the fold operation has to be fed two functions: the vector and the scalar version.

And also the lists are converted to vector lists and vector arrays respectively. Let us take

18https://github.com/Abhiroop/lift-vector/tree/master/src/example

67

1 dotp :: [Float] -> [Float] -> Float

2 dotp xs ys = sum (zipWith (*) xs ys)

3

4 -- Expressed as a fold

5 dotp' :: [Float] -> [Float] -> Float

6 dotp' xs ys = foldr (+) 0 (zipWith (*) xs ys)

Listing 7: Dot product using plain lists

1 -- using vectorised lists

2 dotVec :: [Float] -> [Float] -> Float

3 dotVec xs ys =

4 fold (\x y -> x + y :: FloatX4) (\x y -> x + y :: Float) 0 (

5 zipVec

6 (\x y -> x * y :: FloatX4)

7 (\x y -> x * y :: Float)

8 (toVecList xs)

9 (toVecList ys))

10

11 -- using vectorised arrays

12 dotVec' :: [Float] -> [Float] -> Float

13 dotVec' xs ys

14 = let l1 = length xs

15 l2 = length ys

16 in fold (\x y -> x + y :: FloatX4) (\x y -> x + y :: Float) 0 (

17 zipVec

18 (\x y -> x * y :: FloatX4)

19 (\x y -> x * y :: Float)

20 (toVecArray (Z :. l1) xs)

21 (toVecArray (Z :. l2) ys))

Listing 8: Dot product using vector lists and arrays

a look at the amount of parallelism that this operation can utilise.

7.4.1 Parallel Dot Product Illustrated

In Figure 7.3 we illustrate the parallelism in the dot product function. It starts by

parallelising the zipping of the two vector lists, using the vector multiplication operation

and then proceeds to use the vector addition operation to fold the resultant list.

Generally any algorithm which can be represented using folds, zips and maps can

be expressed in lift-vector. For algorithms which cannot be expressed using these higher

order functions and combinators, we always have access to the more basic APIs in the

68

Figure 7.3: Parallelism in Dot Product Illustrated

form of pack, unpack, broadcast etc.

We discuss about the performance and trade-offs for this and various other algo-

rithms in Chapter 10.

8. A COST MODELS FOR VECTORISATION

This chapter is going to introduce a very simple cost model of vectorisation. The real

significance of cost model arises from automatic vectorisers. Generally the compiler would

attempt to apply loop vectorisation or the superword level parallelism (SLP) algorithm

[LA00]. However as we discussed in the previous chapter, it is quite hard to have an

assessment of the gain or loss from vectorisation. To solve that, most major vectorising

compilers like GCC or LLVM have the notion of a cost model which allows them to decide

whether to vectorise or not.

While we are not adding automatic vectorisation support to GHC, we present this

general cost model as it is a useful tool even for manual vectorisation. We initially present

the cost model of LLVM, which is available as part of the LLVM codebase19. It is not a

very fancy model but provides a good starting point.

8.1 LLVM’s Cost Model

We are primarily dealing with loop vectorisation, so we are interested in the speedup

obtained from vectorising loops. We define the vectorisation factor VF, as the number of

scalar elements that fit inside a vector. In LLVM, every operation inside a loop which is

affected by the vectorisation, is given a cost of 1 and all those costs are summed up. The

sum is divided by the vectorisation factor to provide the possible gain.

costloop =
1

V F
Σcostinstr,V F

Each of the individual costs are taken from hardware instruction set lookup tables.

Followed by that the compiler calculates,

costdiff = costvec − costscalar

A negative value results in the application of the vectorisation transformation. Also

the percentage of instruction savings from vectorisation can be calculated using the below:

saving =
|costdiff |
costscalar

=
|costvec − costscalar|

costscalar
19https://github.com/llvm-mirror/llvm/blob/master/lib/Analysis/CostModel.cpp

69

70

8.2 An alternate cost model

While LLVM’s cost model works well enough for simple enough cases of vectori-

sation, there has been studies [PCJ] stating the ineffectiveness of the cost model. This

specific study [PCJ] found there is actually not a visible correlation in the instruction

saving percentages predicted by LLVM and the actual cost savings. So we try to propose

a simpler cost model where the correlation would be more obvious.

costloop =
1

V F
Σcostinstr,V F − Σcostpack,unpack,broadcast

The only difference in our cost model is subtracting the cost of any form of packing,

unpacking or broadcasting operation which is a major contributor in reducing the gains

from vectorisation. A negative cost implies a reduction in the total cost of the computation

which can be inferred as a positive outcome from vectorisation. A positive cost implies

that the cost of the computation increase upon vectorisation which would discourage a user

from vectorising. As for the actual instruction costs, LLVM has an extensive instruction

set cost table available with it.

We take this opportunity to mention an extensive piece of work by Agner Fog known

as Agner Fog’s optimisation manual [Fog+11] where the author has provided a detailed

set of cost metric for each and every possible instruction on the x86 instruction sets on

almost every possible processor set that has been released by Intel and AMD. However,

it is too low level for general use, and is primarily a tool for compiler writers to create a

cost model.

We have currently not encoded any of this information in GHC. For the sake of

an example, lets consider each packing/unpacking operation taking a cost of 1 and an

arithmetic operator a cost of 4(equal to the vectorisation factor). Considering the following

operation,

1 B[i] = (C[2*i]*(D[2*i]+(E[2*i]*F[2*i])))

So if we calculate the final cost for each iteration of the above loop,

(4/4(multiplication)−(1(packing C)+(4/4(addition)−(1(packing D)+(4/4(multiplication)−

(1(for packing E) + 1(for packing F))))))))

= (4/4− (1 + (4/4− (1 + (4/4− (1 + 1))))))

= (1− (1 + (1− (1 + (1− 2)))))

71

= (1− (1 + (1− (1− 1))))

= (1− (1 + (1− 0)))

= (1− (1 + 1))

= (1− 2)

= −1

Hence the final cost of vectorising this loop would be negative which implies a gain

from vectorisation. And note, this implies the cost per iteration. For an array comprising

of a million elements, we process four elements at a time (for Xmm registers) we run

250,000 iteration and we would save cost by -1 for every iteration, which is a generous

profit.

However the balance between profitability and loss is quite fragile using this cost

model. If we extend the same operation with another packing and an additional arithmetic

operation i.e,

1 A[i] = B[i] * (C[2*i]*(D[2*i]+(E[2*i]*F[2*i])))

assuming the previous cost per instruction, the final cost of the loop comes out to

be +1 which implies that vectorisation results in a loss. We show more example metrics

involving this cost model in Chapter 10.

9. AUTOMATIC VECTORISATION

Most of the work that we have done till now involve explicit vectorisation. The programmer

needs to have full awareness of the cost model as well as the architecture specific support for

vector instructions. While it is possible for library authors to possess this knowledge, the

major goal is to bring vectorisation to the masses while retaining the original declarative

and high level features of Haskell. As we saw in chapter 7, the library lift-vector provides

a few higher order functions and data types for vector programming but it again delegates

the task of choosing between the FloatX4 or FloatX8 or FloatX16 type to the programmer.

Also a number of complex algorithms are not expressible using the limited number of

combinators that lift-vector provides.

As an attempt to mitigate all of the above problems, we propose to make the com-

piler intelligent enough so that it can implicitly vectorise a given Haskell program. We

sketch out a possible blueprint for automatic vectorisation in GHC, without delving into

the details of various vectorisation algorithms in Figure 9.1.

Figure 9.1: A blueprint of automatic vectorisation in GHC

72

73

The steps demonstrated in the above figure attempts to produce a possibly optimal

assembly code. The most optimal code always need not be a vectorised code because the

cost of the various packing and unpacking operations might dominate the actual gains

from the vector operations, as demonstrated in the last chapter. We initially check if an

imaginary -fvectorise flag is enabled. Followed by that it generates the data dependence

graph of the entire program.

A data dependence graph [FOW87] is a directed graph where the nodes constitute

an atomic block of instructions and the edges denotes the corresponding other instructions

on whom a particular nodes depends on. We provide the formal definition of dependence

in the next section. The data dependence graph allows the compiler to detect the loops

and other control flow structures where vectorisation is possible. The same information

could also be obtained from a control flow graph (which GHC already builds20) but that

would eventually involve running a separate dependence analysis pass.

After crafting the dependence graph and detecting the loops, the compiler needs to

query the processor micro-architecture from the runtime. As different micro-architecture

support a wide permutation of vector instruction sets (AVX, SSE etc) the compiler should

try to generate all the possible permutations. So the intermediate representation that

the vectorisation algorithm emits, has to experiment with multiple permutations of vec-

torisation instructions and run a cost model analysis to detect the form with the least

cost.

Critique: A number of operations in the above blueprint are computationally in-

tensive. The vectorisation algorithm tends to be an NP-Complete problem. Similarly

finding the ideal combination of instructions, mixing the various micro-architectures, can

result in generating too many permutations. As a result, any of our experiments in au-

tomatic vectorisation are not ready to be merged to the GHC mainline currently. They

result in drastic increase in compilation times which is a severe red flag for most industrial

compilers. However, from a research perspective we highlight the possible vectorisation

algorithms that we have briefly experimented with.

9.1 Loop Vectorisation and Dependence Analysis

There are primarily two classes of automatic vectorisation algorithms: loop based

vectorisation [NZ08] and superword level parallelism (SLP) based algorithm [LA00]. In

20GHC’s control flow graphs: https://github.com/ghc/ghc/blob/master/compiler/cmm/MkGraph.hs

74

this section we discuss about the first class of algorithms.

Loop vectorisation, as the name implies are focused on vectorizing loops. Generally

loops are unrolled or to be more specific, they undergo a transformation known as strip-

mining [Wei91]. Strip mining unrolls a loop, taking into account the vectorisation factor.

1 i = 1

2

3 do while (i<=n)

4

5 a(i) = b(i) + c(i) ! Original loop code

6

7 i = i + 1

8

9 end do

1 !The vectorizer generates the following two loops

2

3 i = 1

4

5 do while (i < (n - mod(n,4)))

6

7 ! Vector strip-mined loop.

8

9 a(i:i+3) = b(i:i+3) + c(i:i+3)

10

11 i = i + 4

12

13 end do

14

15 do while (i <= n)

16

17 a(i) = b(i) + c(i) !Scalar clean-up loop

18

19 i = i + 1

20

21 end do

Listing 9: Before and after strip-mining

As we can see in Listing 9 the final part of the loop undergoes undergoes a scalar

clean up which is akin to the scalar dribble problem which we discussed in Section 7.2.2.

Strip-mining is applicable on nested loops as well, as demonstrated by Weiss et al [Wei91].

However, we have chosen a contrived example in Listing 9 and generally the structure of

75

loops are much more complex where they possess, what are called inter and intra loop

dependences. Most loop vectorisation algorithms initially involve a phase of dependence

analyses.

Dependence Analysis : An individual statement S2 is said to be dependent on

S1 if S2 can be executed only after S1. For example:

1 S1: x = 5;

2 S2: y = x + 3;

In the above case S2 depends on S1 to calculate the value of x before it can calculate

y. Similarly it is possible to have dependences in loops,

1 for(i = 2; i < n; i++)

2 a[i] = a[i - 1] + b [i - 2];

There are principally four type of dependences:

• True or flow dependences : When a read happens after write. Example:

1 for(i = 2; i < n; i++)

2 a[i] = a[i - 1];

• Anti dependence: When a write happens after read. Example:

1 for(i = 2; i < n; i++)

2 a[i] = a[i + 1];

• Output dependence: When a write happens after a write

1 for(i = 2; i < n; i++)

2 a[i] = i;

3 a[i] = 8;

• Input dependence: When a read happens after a read.

76

1 for(i = 2; i < n; i++)

2 b = a[i] + 10;

3 c = a[i] - 10;

Of all the classes of dependences mentioned above, flow dependences and anti de-

pendences majorly affect vectorisation and are called loop carried dependences. The other

dependences are majorly harmless or are eliminated by other optimisation passes. There

are a number of famous dependence analysis algorithms like the Omega test [Pug91] which

can be integrated into GHC. The Omega Test uses an integer programming algorithm and

the authors state that, contrary to the common wisdom of NP complete problems being

computationally intensive, it runs relatively fast.

We are yet to implement the Omega Test in GHC, however after integrating the

solution into any compiler, strip mining becomes a trivial task which eventually would

lead to an efficient automatic loop vectorisation algorithm in GHC.

9.2 Throttled superword level parallelism algorithm

Throttled superword level parallelism or the TSLP algorithm belong to a family

of auto-vectorisation algorithms, which was originally born from the SLP algorithm in-

troduced by Larsen et al. [LA00]. The Throttled SLP algorithm [PJ15], which is the

current state of the art vectorisation algorithm inside LLVM21 applies a modification on

the original SLP algorithm by throttling it using a vectorisation cost model analysis. The

SLP family of algorithms are not limited to loops, although in general the most profitable

outcomes arises from vectorising loops.

The SLP algorithm: This algorithm is a subset of instruction level parallelism.

SLP looks for a number of properties inside the intermediate representation of the program.

Primarily it looks for instructions which are isomorphic to each other and packs them

together. Isomorphic statements are those which undergo the same vector operation. It

uses a chain like data structure called use-def chains to populate what it refers as the pack

set which is the list of instruction it should pack together.

Additionally SLP also runs an alignment analysis pass which looks for memory

accesses which are aligned with each other and tries to pack them together. The general

21as of version 3.6

77

idea is to embrace the cost model of the compiler wholeheartedly and use that to vectorise

the operations. We show a sample pass of SLP algorithm below.

1 A = X[i + 0]

2 C = E * 3

3 B = X[i + 1]

4 H = C - A

5 D = F * 5

6 J = D - B

General loop vectorisation algorithms would have a hard time vectorising the above

snippet because of the complex dependences between the various statements. However,

SLP uses a simple logic of grouping the isomorphic operations (using use-def chains) and

also consecutive memory accesses, across a number of passes to finally produce:

1 (A,B) = X[i : i + 1]

2 (C,D) = (E,F) * (3,5)

3 (H,J) = (C,D) - (A,B)

We use tuples to denote vector registers above and each of the arithmetic operators

are now their vector equivalent.

Throttled SLP: As the name implies, the TSLP algorithm simply uses the appro-

priate cost model to throttle the vectorisation when it’s cost exceeds the scalar version.

TSLP constructs the entire SLP graph and then cuts the graph at all the positions and

inspects the final cost of vectorisation. Quite unsurprisingly this is also a computationally

intensive technique, as it effectively boils down to finding all the connected subgraphs in-

cluding the root instruction, inside the SLP graph. The contribution of the paper [PJ15]

is to find a linear time algorithm for the graph cutting problem. Interested readers are

encouraged to study it to find more details about the linear time algorithm.

9.3 Reflection

Throughout this chapter we discuss about two forms of vectorisation algorithms:

loop based and straight line vectorisation (SLP). It is quite visible that the general pro-

cedure of auto-vectorisation is relatively computation heavy, involving solving multiple

78

NP-Complete problems. Additionally the presence of a number of micro-architectures

and their corresponding vector instruction sets further complicates the issue.

Our preliminary experiments with loop based vectorisation were disappointing,

showing a drastic increase in compile time and no clear visible performance gains. Within

the time frame we could only support a very incomplete prototype of the TSLP algorithm,

inside the GHC compiler. We discuss in Section 11.2, our possible avenues of research to

improve the automatic vectorisation support of GHC in the future.

10. EVALUATION

In this chapter we demonstrate a series of memory intensive algorithms and vectorise them

using the lift-vector library. We compare the performance of the library with solutions

using plain Haskell lists. Within the time frame of the project there was little to almost

no performance optimisation done inside lift-vector. As a result the performance is not up

to the mark that a properly optimised vectorised function can attain. We demonstrate the

declarative API as well as the current numbers nonetheless. All the benchmarks were run

on a MacBook Pro with 2.7 GHz Intel Core i5 processor(sandy bridge micro-architecture)

and 8 GB DDR3 RAM. The timings were measured using getCPUTime function from the

System.CPUTime module provided by base. All the test cases were randomly generated

using the random22 package. The entire source code of the benchmarks are available

online23. For vectorisation the AVX family of vector instructions have been used.

10.1 Dot Product of Vectors

We have demonstrated the dot product of vectors using plain Haskell lists as well as

the two central data structures of lift-vector : vector lists and vector arrays, in Section 7.4.

The dot product functions presented in Listings 7 and 8 accepts two lists of floats. Each

element represents a dimension of the vector. We ensure that the number of elements are

same in both the lists. We provide input data size in the following order:

• 10 elements

• 100 elements

• 10,000 elements

• 100,000 elements

• 1,000,000 elements

• 2,000,000 elements

• 3,000,000 elements

22http://hackage.haskell.org/package/random
23https://github.com/Abhiroop/lift-vector/blob/master/src/example/Main.hs

79

80

• 4,000,000 elements

• 5,000,000 elements

Figure 10.1: Benchmark of dot product of two vectors

In Figure 10.1 the X-axis represent the entire size of the lists. The Y-Axis represents

the time taken for the function to run in seconds.

Discussion: We can see in the above figure, that vector lists performs the best out

of the three data structures. An optimised vector array could effectively perform much

better than a plain Haskell list or a vector list. However here we see its performance in the

range between lists and vector lists. The reason, as discussed in Section 7.2.3, is the lack of

in place writes. So the amount of performance gains that it has from vectorisation as well

as stream fusion (from the vector library) is not fully visible due to the final O(n) write

iteration. Additionally all of our efforts on performance optimisation like loop unrolling

81

and benchmarking the correct data size for packing, have been focused on vector lists.

Relatively the vector arrays are purely un-optimised code with just plain vectorisation.

Another important observation is as the size of the data increases, the impact of

vectorisation becomes more profound. We can see in the final data set of 5 million elements,

vector lists perform almost 2.5X faster than general lists.

10.2 Matrix Multiplication

Matrix multiplication is the traditional example used as a benchmark in most high

performance computing literature. It is one of the most applied algorithms in computer

science with applications in recommendation systems, machine learning, graphics, games

and a number of other applications. As a result matrix multiplication is commonly one

of the biggest targets of parallelism. When multiplying matrices each of the individual

components being multiplied are independent of the other multiplications. As such the

algorithm can leverage both vectorisation as well as multi-core parallelism. However, we

choose to solely demonstrate the speedups obtained from vectorisation.

Using plain Haskell lists matrix multiplication can be written as:

1 matmult :: [[Float]] -> [[Float]] -> [[Float]]

2 matmult a b = [[sum (zipWith (*) ar bc) | bc <- (transpose b)] | ar <- a]

This solution is definitely not the most optimal one. For one, the transpose operation

is quite costly. But it is able to express matrix multiplication using the zipping and folding

combinators. As a result this can be very easily translated to vector lists and vector arrays

from lift-vector.

1 -- using vector lists

2 matmultVec :: [[Float]] -> [[Float]] -> [[Float]]

3 matmultVec a b =

4 [[fold (\x y -> x + y :: FloatX4) (\x y -> x + y :: Float) 0 (

5 zipVec

6 (\x y -> x * y :: FloatX4)

7 (\x y -> x * y :: Float)

8 (toVecList ar)

82

9 (toVecList bc))

10 | bc <- (transpose b)

11]

12 | ar <- a

13]

14

15 matmultVec' :: [[Float]] -> [[Float]] -> [[Float]]

16 matmultVec' a@(f:_) b =

17 let l = length f

18 in [[fold (\x y -> x + y :: FloatX4) (\x y -> x + y :: Float) 0 (

19 zipVec

20 (\x y -> x * y :: FloatX4)

21 (\x y -> x * y :: Float)

22 (toVecArray (Z :. l) ar)

23 (toVecArray (Z :. l) bc))

24 | bc <- (transpose b)

25]

26 | ar <- a

27]

The algorithm translates almost line by line from the list based solution. The

benchmarks that we shall run on all three solutions are run for dense matrices. There are

a number of techniques for vectorizing operations on sparse matrices [Bol+03]. However

for the purpose of this benchmark we limit ourselves to randomly generated dense matrices.

We use square matrices for our benchmarks, but the algorithms can accept any dimension.

However we do not impose any runtime or compile time error for mismatched dimensions.

Lazy Evaluation: Every step of the matrix multiplication in the programs rep-

resented above is lazy. For the other examples we are using the deepseq function from

the Control.DeepSeq24 module. The general seq function evaluates a data structure to

it’s Weak Head Normal Form. However we require more deeper evaluation in case of this

function. Also additionally we use the following function:

1 forceElements :: [a] -> ()

24http://hackage.haskell.org/package/deepseq

83

2 forceElements = foldr seq ()

to walk across each and every element of the two dimensional matrices and ensure

that evaluation occurs. Hence deepSeq and forceElements together to evaluate the entire

resultant matrix. Let us look at the performance benchmarks now.

Figure 10.2: Benchmark of matrix multiplication of two dense matrices

The X-axis in the above figure refers to the number of rows or columns of a matrix.

As they are square matrices the number of rows and columns are same. The Y axis

represents the amount of time taken in seconds. It should be noted that the timings

indicated in this benchmark also additionally includes the call to the forceElements

function which walks across the entire matrix evaluating it.

Discussion : In the result we can see that vector lists once again perform better

than vector arrays as well as plain Haskell lists. The poor performance of vector arrays is

primarily due to the O(n) writes which is happening for each row n times. In the previous

example the function folds the value so instead of writing to a new array it accumulated

84

the value which allowed it to perform better than plain lists. But in this case the result is

a full fledged matrix which is re-created and has a poor write performance. Hence, in any

algorithm which would involve folding, vector arrays and vector lists would perform much

better than plain lists due to vectorisation. But the linear time write spoils the overall

gains in this case.

Additionally, the performance of vector lists weren’t much better than plain lists. We

use matrices of dimension 50x50, 100x100, 200x200, 300x300, 400x400, 500x500, 600x600,

700x700, 800x800 and 1000x1000. By the final matrix, vector lists take 200 seconds25 while

plain lists take approximately 220 seconds, which is only 1.1x the original performance.

It is possible to do much better with more effective optimisation.

Also a basic performance analysis shows us that the transpose function is the

real bottleneck, and matrix multiplication can be done without the costly transpose

operation. In fact Repa defines matrix multiplication using a separate traverse26 function

where it is able to beat the performance of a fully vectorised hand written code. In Repa

integer based matrix multiplication of 1000x1000 dimension matrices can happen in tens

of seconds. Hence, if we integrate mutable vectors as well as define matrix multiplication

using the traversal method, vector arrays can easily beat the performance of vector lists

as well as plain lists by a huge margin.

10.3 Polynomial Evaluation

For our next section we have chosen the example of polynomial evaluation. We have

already discussed about this problem Section 6.5. The implementation that we provided

in Listing 4 was entirely written using the native unlifted types of GHC. Let us try to

implement the same algorithm using lift-vector.

Unfortunately the polynomial evaluation problem cannot be written in a declarative

way using folds and zips. The plain Haskell list based solution looks like this:

1 evalPoly :: Float -> [Float] -> Float

2 evalPoly value coeffs = go coeffs (length coeffs - 1)

3 where

4 go [] _ = 0

25this timing includes the time taken to traverse the entire resultant matrix
26https://hackage.haskell.org/package/repa-3.4.1.3/docs/src/Data-Array-Repa-Operators-Traversal.

html#traverse

85

5 go (x:xs) len = (x * (value ^ len)) + go xs (len - 1)

The issue with this representation is that it is recursive and each iteration is de-

pendent on the value of the previous. If we try to abstract over this and present the

polynomial evaluation as a fold,

1 evalPolyFold :: Float -> [Float] -> Float

2 evalPolyFold value coeffs

3 = let index_coeffs = (zip coeffs

4 (reverse

5 (take

6 (length coeffs)

7 (iterate (+ 1) 0))))

8 in foldr (\\(c,p) v -> v * c^p) 0 index_coeffs

Even in the above representation we cannot get rid of the fact that each iteration

calculates the value using the previous iteration. We showed in Figure 6.7 of Section

6.5 of how polynomial evaluation can be vectorised. And if we hope to leverage that

vectorisation we have to use the more lower level primitives from the Data.Primitive

module in lift-vector. The final vectorised programs looks like the following:

1 evalPolyVec :: Float -> [Float] -> Float

2 evalPolyVec value coeffs = go (broadcastVector value) coeffs (length coeffs)

3 where

4 go _ [] _ = 0.0

5 go vec_val (x:y:z:w:xs) len =

6 let packed_coeff = packVector (x, y, z, w) :: FloatX4

7 step_length = len - sizeOfVec

8 in (go' packed_coeff vec_val step_length) + (go vec_val xs step_length)

9 where

10 go' pc _ 0 =

11 let (x1, x2, x3, x4) = unpackVector pc

12 in (x1 * value ^ 3) +

86

13 (x2 * value ^ 2) +

14 (x3 * value) + x4

15 go' pc v l =

16 let t = pc * v

17 in go' t v (l - 1)

18 go vec_val (x:xs) len = x + (go vec_val xs len)

The unlifted types are noticeably missing and the program is starting to resemble a

standard worker wrapper representation[GH09] in Haskell. However there is hefty amount

of scalar cleanup that needs to be done owing to the structure of the program. Let us take

a look at the benchmarks now.

Figure 10.3: Benchmark of polynomial evaluation

The X axis indicates the order of the polynomial. We limited the possible orders to

avoid blowing up the main memory. The Y axis indicates the time consumed in seconds

for computing.

Discussion: The result is rather disappointing in the fact that plain Haskell lists

87

performs way better than both the unlifted typed solution as well as the solution with

lift-vector. The cost of the higher level abstractions of lift-vector starts to outweigh the

benefits of vectorisation. At polynomials of order 10000, unlifted vector types perform

close to 3.5 times better than the lift-vector solutions. That is not to say that abstractions

are bad. It points to a scope of improvement especially for alignment related issues in

vectorisation. In fact the entire cost model of Chapter 8 was conjured by analysing this

particular algorithm a number of times.

We could see in the past two benchmarks, vector lists dominate all other alternatives,

but this particular benchmark sheds light into the performance issues plaguing the lift-

vector library. We discuss some possible steps to alleviate these issues in the section on

future work.

10.4 Pearson Correlation coefficient

In this section we look at the calculation of the Pearson Correlation Coefficient.

The Pearson Correlation coefficient provides a measure of correlation between two sets of

data. It has applications in data mining and analytics. It is mathematically expressed as:

r =
nΣxiyi − ΣxiΣyi√

nΣx2i − (Σxi)2
√
nΣy2i − (Σyi)2

In the above formula n is the sample size, xi and yi are the individual sample point

indexed with i. The value of the correlation coefficient falls between -1 and +1. -1 implies

entirely negative correlation whereas +1 means a positive correlation. A value close to 0

implies no correlation.

It is fairly straightforward to represent the above formula using plain Haskell lists.

1 pearson :: [Float] -> [Float] -> Float

2 pearson xs ys

3 | (length xs) /= (length ys) = error "Incorrect dataset"

4 | otherwise =

5 let n = fromIntegral (length xs) :: Float

6 num = (n * (sum (zipWith (*) xs ys))) - ((sum xs) * (sum ys))

7 denom1 = sqrt $ (n * (sum (map (^ 2) xs))) - ((sum xs) ^ 2)

8 denom2 = sqrt $ (n * (sum (map (^ 2) ys))) - ((sum ys) ^ 2)

88

9 in num / (denom1 * denom2)

The above program has a number of points of parallelism. Firstly there exists the

sum operations over large data sets which can be represented as vectorised folds. Also the

exponentiation operator can be reproduced using the zipVec combinator to exploit the

parallelism. So in case of both vector lists as well as vector arrays we define a set of helper

functions to make the code more declarative. This is what the final vectorised code in

lift-vector looks like:

1 -- using vector lists

2 pearsonVec :: [Float] -> [Float] -> Float

3 pearsonVec xs ys

4 | (length xs) /= (length ys) = error "Incorrect dataset"

5 | otherwise =

6 let n = fromIntegral (length xs) :: Float

7 num = (n * (sumVecF (zipMultF xs ys))) - ((sumVecF xs) * (sumVecF ys))

8 denom1 = sqrt ((n * (sumVecF (zipMultF xs xs))) - ((sumVecF xs) ^ 2))

9 denom2 = sqrt ((n * (sumVecF (zipMultF ys ys))) - ((sumVecF ys) ^ 2))

10 in num / (denom1 * denom2)

11

12 sumVecF :: [Float] -> Float

13 sumVecF xs =

14 fold (\x y -> x + y :: FloatX4) (\x y -> x + y :: Float) 0 (toVecList xs)

15

16 zipMultF :: [Float] -> [Float] -> [Float]

17 zipMultF xs ys =

18 fromVecList (

19 (zipVec

20 (\x y -> x * y :: FloatX4)

21 (\x y -> x * y :: Float)

22 (toVecList xs)

23 (toVecList ys)))

24

25 -- using vector arrays

89

26 pearsonVec' :: [Float] -> [Float] -> Float

27 pearsonVec' xs ys

28 | (length xs) /= (length ys) = error "Incorrect dataset"

29 | otherwise =

30 let n = fromIntegral (length xs) :: Float

31 num =

32 (n * (sumVecF' (zipMultF' xs ys))) - ((sumVecF' xs) * (sumVecF' ys))

33 denom1 = sqrt ((n * (sumVecF' (zipMultF' xs xs))) - ((sumVecF' xs) ^ 2))

34 denom2 = sqrt ((n * (sumVecF' (zipMultF' ys ys))) - ((sumVecF' ys) ^ 2))

35 in num / (denom1 * denom2)

36

37 sumVecF' :: [Float] -> Float

38 sumVecF' xs =

39 fold

40 (\x y -> x + y :: FloatX4)

41 (\x y -> x + y :: Float)

42 0

43 (toVecArray (Z :. (length xs)) xs)

44

45 zipMultF' :: [Float] -> [Float] -> [Float]

46 zipMultF' xs ys =

47 let l = length xs

48 in fromVecArray (

49 (zipVec

50 (\x y -> x * y :: FloatX4)

51 (\x y -> x * y :: Float)

52 (toVecArray (Z :. l) xs)

53 (toVecArray (Z :. l) ys)))

Both the programs heavily resemble the original list based solution. Again we

should remember that this is not the most efficient form of the program. For instance,

fromVecArray call is a very costly O(n) call, which is added in the all important zipMultF’

function. Although this makes our API quite declarative, this will prove to be a costly

design choice in our benchmarks. Lets us take a look at the benchmarks now.

90

Figure 10.4: Benchmark of calculating the Pearson Correlation Coefficient

In Figure 10.4 the X axis represents the size of each dataset whereas the Y axis

represents the time consumed in calculating the Pearson correlation coefficient, in seconds.

Discussion : Once again in this algorithm vector lists outperform both vector

arrays as well as plain lists. The reasoning is quite similar to the discussion in the dot

product algorithm. Consequently vector arrays show a decent performance despite the

costly fromVecArray method call. An optimised vector array can easily outperform vector

lists owing to stream fusion. In this case we have have used the final data set of 10 million

elements where the performance of vector lists are 5 times better than plain lists, which

is quite an encouraging gain.

10.5 Benchmarking infrastructure

In this section we briefly describe the benchmarking infrastructure that we use.

Figure 10.5 gives a broad overview of the entire infrastructure.

91

Figure 10.5: Benchmarking infrastructure in lift-vector

We have entirely used handcrafted Haskell 98 functions to design the benchmarking

code. Two of the external package that we have used are random for generating various

kinds of random inputs and deepseq for deep evaluation of data structure.

Haskell already provides a seq function for evaluating an argument, however seq

evaluates an argument up to its weak head normal form. The deepseq function provides

full evaluation. It can be understood through this example.

1 > [1,2,undefined] `seq` 3

2 3

3

4 > [1,2,undefined] `deepseq` 3

5 *** Exception: Prelude.undefined

The above shows that deepseq evaluates to the inner depths of the structure. We

run each benchmark and generate a comma separated value file, which is fed to the R

programming language via the inline-r27 package. R is a powerful language for data

munging and graph generation and we exclusively generate all our charts using R.

10.6 Reflection

Throughout this chapter we have witnessed various benchmarks for measuring the

performances of various components of the lift-vector library. Broadly lift-vector provides

two major modules:

• Data.Operations - this defines the ArithVector typeclass which provides all the

27https://hackage.haskell.org/package/inline-r

92

higher order functions for mapping, folding and zipping. This is generally the first

choice of API.

• Data.Primitive - when an algorithm cannot be expressed using Data.Operations,

a library author has the option of manually packing and unpacking the vectors and

handcrafting the entire algorithm. This should be used as a last resort when the

algorithm has no chance of being expressed through the higher order functions

In most of the benchmarks vector lists triumph over the other data structures. This

is primarily owing to some internal optimisations that we have applied to vector lists

and obviously the vectorisation, parallelising the throughput. Vector arrays perform quite

well, given the fact that there was no performance optimisations applied on it. However

the polynomial evaluation function is a proof of the difficulties of vector computations.

When alignment of the vectors are incorrect they tend to perform slower than the plain

list based solution, as demonstrated in the polynomial example.

There are a number of other possible numeric computational examples like Fast

Fourier Transform and stencil computation problems like Successive Over Relaxation,

which could be possibly expressed using lift-vector. The API of the ArithVector typeclass

needs to be extended to include vectorised generic traversals [LV02]. Additionally there is

a huge scope of improving the performance of vector arrays by introducing mutable vectors

and allowing in-place writes for such write-heavy and memory intensive algorithms.

11. CONCLUSION

This thesis outlines the design and implementation of vectorisation in the Glasgow Haskell

Compiler. Vectorisation as a domain of high performance computing has primarily resided

among the reigns of imperative programming languages like Fortran, C and C++. Through

this project we show it is quite possible to exploit superword level parallelism in a purely

functional language. Over the course of this report, we have demonstrated all the moving

parts of the Glasgow Haskell Compiler as well as the components which we have modi-

fied across a period of three months. We have also introduced a new library for vector

programming. We outline our contributions in the following sections.

11.1 Contributions

– We have extended the Cmm MachOps or machine operations to understand vector

instructions. This lays the groundwork for vectorisation in GHC. Now the native

code generator can be extended as much as necessary, to include newer and more

advanced vector instruction sets like AVX-512.

– We have also provided a proof of concept support for actually emitting the vector

assembly instructions from Cmm. We have chosen to implement arithmetic opera-

tions from both the AVX as well as the SSE family, to operate on the 128-bit wide

Xmm registers and shown significant performance improvement.

– Another contribution was the support for 8, 16 and 32 bits integer types in GHC,

which provides a substrate for implementing SIMD operations on integers in the

future.

– The lift-vector library is the first of its kind, in the Haskell ecosystem which provides

users a reasonably declarative API for directly programming with vectors. Its API

is a significant improvement compared to imperative counterparts. However it has

room for substantial progress both in terms of the API as well as performance.

– We have also proposed a new cost model based on our experiments, to predict the

costs and benefits of vectorisation.

– Finally as part of this thesis, we have attempted to reason about possible benefits

in automatic vectorisation by indtroducing other intermediate representations inside

93

94

GHC. Although the compilation times have suffered, but introducing a new IR in

GHC could open up opportunities for other data flow analysis related improvements.

11.2 Future Work

Keeping in mind our contributions to the Glasgow Haskell Compiler infrastructure,

in this section we talk about a set of research and engineering problems that we can tackle

in the future, based on the current work.

11.2.1 Supporting wider vectors

We have modified the native code generator backend of GHC and extended the

Cmm grammar to allow it to express vector operations. To demonstrate the effectiveness

of the effort, we have added support for AVX and the SSE family of instructions. All of

the vector instructions operate on the 128-bit XMM registers.

The compiler is currently incapable of utilising the 256-bits wide YMM and 512-

bits wide ZMM registers. To support these superword registers, we need to make certain

small changes in the the code generator. Adding support for the broader registers will

also require us to provide wrapper types like FloatX8, FloatX16 etc, which are relatively

trivial to implement. At the same time we need to benchmark the performance gains from

mixing various families and width of vector operations.

11.2.2 Improving the lift-vector API

The lift-vector API for vector lists, currently requires the consumer to provide both

scalar and the vector arithmetic operations.

1 -- Multiply all the elements of a list

2 multiply :: [Float] -> Float

3 multiply xs =

4 fold (\x y -> x * y :: FloatX4) (\x y -> x * y :: Float) 0 (toVecList xs)

While the overloading of the vector operation simplifies the API considerably, the

consumption of both the scalar and vector functions makes it slightly awkward. A possible

solution might be to introduce a monadic API to carry around a dictionary which store the

mapping from each vector to scalar function. However, that would force all the operations

95

to be carried out inside the monad. The current API replicates the stateless API with

lists quite faithfully, and the trade-off would be between expressivity and familiarity.

Additionally, there are a number of compositional typeclasses instantiated by lists

like Applicative, Monad, Alternative. A lot of them do not have any currently visible

advantage in vector lists, but we can research more to find any possible way to leverage

these and some more useful typeclasses.

11.2.3 Improving the lift-vector performance

We have observed in Chapter 10, the performance regressions of lift-vector while

evaluating polynomials. This was primarily caused by misaligned vectors and the heavy

cost of packing-unpacking. The cost model described in Chapter 8 doesn’t account for

alignment issues. Alignment is an age old problem plaguing vectorisation and the only

cure is a programmer meticulously checking the assembly and ensuring proper alignment.

Additionally the performance of vector arrays have always lagged behind vector

lists despite leveraging the stream fusion optimisation. An initial line of work should

be to integrate mutable vectors in vector arrays which would allow it to have O(1) in

place writes. Also a vector array code is unable to tap in to the join point optimisation

[Mau+17] happening in GHC, which should be investigated and integrated with the vector

array module.

11.2.4 More vectorised data structures

We currently provide support for vectorised lists and arrays and they are sufficient

enough to demonstrate the declarative API that we are aiming for. However lists or more

formally linked lists are traditionally not very frequently used in performance critical

applications. Most high performance programming revolves around programming with

arrays.

This report serves as a proof of concept that vector instructions can be supported

by the compiler, however there exists a number of interesting operations like traversals,

finding the lowest predecessor etc on various data structures which could be implemented

in the future inside the lift-vector library.

Some low hanging fruits like priority queue vectorisation [CRM92] or tree traversal

vectorisation [JGK13] should show immediate gains compared to their scalar counterparts.

96

11.2.5 Automatic Vectorisation

We spoke about various automatic vectorisation approaches in Chapter 9. Initial

results for automatic vectorisation were disappointing, however a major cause for the poor

results were the intermediate representation languages used inside GHC. Almost every

major vectorising compiler uses the Static Single Assignment (SSA) form representation

[Cyt+89].

We provide a brief introduction to SSA in Section 5.1. The SSA form is an improve-

ment over use-def chains for data flow and control analysis. Introducing an SSA based

IR in GHC could result in improved code generation in the LLVM backend as well. It is a

broad topic of its own and there are number of open research challenges in experimenting

with not just SSA but other intermediate representations like program dependence graphs

[FOW87], and finding out the best possible representation to aid auto-vectorisation.

11.2.6 Programming Models for Vectorisation

With the introduction of the Intel SPMD Compiler [PM12] in 2012, a new model of

vector programming called SPMD on SIMD was introduced. SPMD on SIMD ports the

programming model of Open MPI to vector machines, by providing abstractions which

allow each SIMD unit to operate on different pieces of data in a parallel manner. There

are no locks involved and it presents a very declarative language level API which can be

succinctly expressed in Haskell. However there needs to be foundational changes in the

GHC runtime to support this model. This presents another interesting research avenue of

supporting alternate programming models of vectorisation in Haskell.

In closing we believe that high performance computing, by exploiting superword par-

allelism is very much possible in Haskell. The syntax and semantics of Haskell maps very

naturally to the notions of data parallel programming. And if we can make the compiler

and the code generator even more intelligent, we can rival the performance and speed of

imperative languages while maintaining a declarative and elegant model of programming.

Bibliography

[Fly66] Michael J Flynn. “Very high-speed computing systems”. In: Proceedings of

the IEEE 54.12 (1966), pp. 1901–1909.

[All70] Frances E Allen. “Control flow analysis”. In: ACM Sigplan Notices. Vol. 5. 7.

ACM. 1970, pp. 1–19.

[Rey72] John C Reynolds. “Definitional interpreters for higher-order programming

languages”. In: Proceedings of the ACM annual conference-Volume 2. ACM.

1972, pp. 717–740.

[Rey74] John C Reynolds. “Towards a theory of type structure”. In: Programming

Symposium. Springer. 1974, pp. 408–425.

[Rus78] Richard M Russell. “The CRAY-1 computer system”. In: Communications of

the ACM 21.1 (1978), pp. 63–72.

[Cla+80] TJW Clarke et al. “Skim-the s, k, i reduction machine”. In: Proceedings of

the 1980 ACM conference on LISP and functional programming. ACM. 1980,

pp. 128–135.

[FOW87] Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. “The program depen-

dence graph and its use in optimization”. In: ACM Transactions on Program-

ming Languages and Systems (TOPLAS) 9.3 (1987), pp. 319–349.

[RWZ88] Barry K Rosen, Mark N Wegman, and F Kenneth Zadeck. “Global value

numbers and redundant computations”. In: Proceedings of the 15th ACM

SIGPLAN-SIGACT symposium on Principles of programming languages. ACM.

1988, pp. 12–27.

[Col89] Murray I Cole. Algorithmic skeletons: structured management of parallel com-

putation. Pitman London, 1989.

[Cyt+89] Ron Cytron et al. “An efficient method of computing static single assignment

form”. In: Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on

Principles of programming languages. ACM. 1989, pp. 25–35.

[Hug89] John Hughes. “Why functional programming matters”. In: The computer jour-

nal 32.2 (1989), pp. 98–107.

97

BIBLIOGRAPHY 98

[WB89] Philip Wadler and Stephen Blott. “How to make ad-hoc polymorphism less

ad hoc”. In: Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on

Principles of programming languages. ACM. 1989, pp. 60–76.

[Wad90] Philip Wadler. “Comprehending monads”. In: Proceedings of the 1990 ACM

conference on LISP and functional programming. ACM. 1990, pp. 61–78.

[Pug91] William Pugh. “The Omega test: a fast and practical integer programming

algorithm for dependence analysis”. In: Supercomputing, 1991. Supercomput-

ing’91. Proceedings of the 1991 ACM/IEEE Conference on. IEEE. 1991, pp. 4–

13.

[Wei91] Michael Weiss. “Strip mining on SIMD architectures”. In: Proceedings of the

5th international conference on Supercomputing. ACM. 1991, pp. 234–243.

[CRM92] Ling-Yu Chuang, Vernon Rego, and Aditya Mathur. “An application of pro-

gram unification to priority queue vectorization”. In: International Journal of

Parallel Programming 21.3 (1992), pp. 193–224.

[Jon92] Simon L Peyton Jones. “Implementing lazy functional languages on stock

hardware: the Spineless Tagless G-machine”. In: Journal of functional pro-

gramming 2.2 (1992), pp. 127–202.

[Jon+93] SL Peyton Jones et al. “The Glasgow Haskell compiler: a technical overview”.

In: Proc. UK Joint Framework for Information Technology (JFIT) Technical

Conference. Vol. 93. 1993.

[SF93] Amr Sabry and Matthias Felleisen. “Reasoning about programs in continuation-

passing style”. In: Lisp and symbolic computation 6.3-4 (1993), pp. 289–360.

[LP94] John Launchbury and Simon L Peyton Jones. “Lazy functional state threads”.

In: ACM SIGPLAN Notices. Vol. 29. 6. ACM. 1994, pp. 24–35.

[PW96] Alex Peleg and Uri Weiser. “MMX technology extension to the Intel architec-

ture”. In: IEEE micro 16.4 (1996), pp. 42–50.

[Tri+96] Philip W Trinder et al. “GUM: a portable parallel implementation of Haskell”.

In: ACM SIGPLAN Notices. Vol. 31. 5. ACM. 1996, pp. 79–88.

[AJ97] Andrew W Appel and Trevor Jim. “Shrinking lambda expressions in linear

time”. In: Journal of Functional Programming 7.5 (1997), pp. 515–540.

BIBLIOGRAPHY 99

[Sab98] Amr Sabry. “What is a purely functional language?” In: Journal of Functional

Programming 8.1 (1998), pp. 1–22.

[JRR99] Simon Peyton Jones, Norman Ramsey, and Fermin Reig. “C–: A portable as-

sembly language that supports garbage collection”. In: International Confer-

ence on Principles and Practice of Declarative Programming. Springer. 1999,

pp. 1–28.

[Oka99] Chris Okasaki. Purely functional data structures. Cambridge University Press,

1999.

[Hin00] Ralf Hinze. “Generalizing generalized tries”. In: Journal of Functional Pro-

gramming 10.4 (2000), pp. 327–351.

[Jon00] Mark P Jones. “Type classes with functional dependencies”. In: European

Symposium on Programming. Springer. 2000, pp. 230–244.

[LA00] Samuel Larsen and Saman Amarasinghe. Exploiting superword level paral-

lelism with multimedia instruction sets. Vol. 35. 5. ACM, 2000.

[FW01] Matthew Fluet and Stephen Weeks. “Contification using dominators”. In:

ACM SIGPLAN Notices. Vol. 36. 10. ACM. 2001, pp. 2–13.

[JTH01] Simon Peyton Jones, Andrew Tolmach, and Tony Hoare. “Playing by the

rules: rewriting as a practical optimisation technique in GHC”. In: Haskell

workshop. Vol. 1. 2001, pp. 203–233.

[LV02] Ralf Lämmel and Joost Visser. “Typed combinators for generic traversal”.

In: International Symposium on Practical Aspects of Declarative Languages.

Springer. 2002, pp. 137–154.

[Bol+03] Jeff Bolz et al. “Sparse matrix solvers on the GPU: conjugate gradients and

multigrid”. In: ACM transactions on graphics (TOG). Vol. 22. 3. ACM. 2003,

pp. 917–924.

[Jon03] Simon Peyton Jones. Haskell 98 language and libraries: the revised report.

Cambridge University Press, 2003.

[Nai04] Dorit Naishlos. “Autovectorization in GCC”. In: Proceedings of the 2004 GCC

Developers Summit. 2004, pp. 105–118.

[Cha+05] Manuel MT Chakravarty et al. “Associated types with class”. In: ACM SIG-

PLAN Notices. Vol. 40. 1. ACM. 2005, pp. 1–13.

BIBLIOGRAPHY 100

[LOP05] Rita Loogen, Yolanda Ortega-Mallen, and Ricardo Pena-Mari. “Parallel func-

tional programming in Eden”. In: Journal of Functional Programming 15.3

(2005), pp. 431–475.

[Wee06] Stephen Weeks. “Whole-program compilation in MLton”. In: ML 6 (2006),

pp. 1–1.

[And+07] Todd Anderson et al. “Pillar: A parallel implementation language”. In: In-

ternational Workshop on Languages and Compilers for Parallel Computing.

Springer. 2007, pp. 141–155.

[Cha+07] Manuel MT Chakravarty et al. “Data Parallel Haskell: a status report”. In:

Proceedings of the 2007 workshop on Declarative aspects of multicore program-

ming. ACM. 2007, pp. 10–18.

[CLS07] Duncan Coutts, Roman Leshchinskiy, and Don Stewart. “Stream fusion: From

lists to streams to nothing at all”. In: ACM SIGPLAN Notices. Vol. 42. 9.

ACM. 2007, pp. 315–326.

[Fir+08] Nadeem Firasta et al. “Intel AVX: New frontiers in performance improvements

and energy efficiency”. In: Intel white paper 19 (2008), p. 20.

[Hin08] Ralf Hinze. “Functional pearl: streams and unique fixed points”. In: ACM

Sigplan Notices. Vol. 43. 9. ACM. 2008, pp. 189–200.

[NZ08] Dorit Nuzman and Ayal Zaks. “Outer-loop vectorization: revisited for short

simd architectures”. In: Proceedings of the 17th international conference on

Parallel architectures and compilation techniques. ACM. 2008, pp. 2–11.

[Pey+08] Simon Peyton Jones et al. “Harnessing the multicores: Nested data paral-

lelism in Haskell”. In: LIPIcs-Leibniz International Proceedings in Informat-

ics. Vol. 2. Schloss Dagstuhl-Leibniz-Zentrum fur Informatik. 2008.

[GH09] Andy Gill and Graham Hutton. “The worker/wrapper transformation”. In:

Journal of Functional Programming 19.2 (2009), pp. 227–251.

[Kel+10] Gabriele Keller et al. “Regular, shape-polymorphic, parallel arrays in Haskell”.

In: ACM Sigplan Notices. Vol. 45. 9. ACM. 2010, pp. 261–272.

[Mar+10] Simon Marlow et al. “Haskell 2010 language report”. In: Available online

http://www. haskell. org/(May 2011) (2010).

BIBLIOGRAPHY 101

[TC10] David A Terei and Manuel MT Chakravarty. “An LLVM backend for GHC”.

In: ACM Sigplan Notices. Vol. 45. 11. ACM. 2010, pp. 109–120.

[Fog+11] Agner Fog et al. “Instruction tables: Lists of instruction latencies, through-

puts and micro-operation breakdowns for Intel, AMD and VIA CPUs”. In:

Copenhagen University College of Engineering 97 (2011), p. 114.

[BW12] Amy Brown and Greg Wilson. “The architecture of open source applications,

volume ii”. In: Ebook, May (2012).

[Cli12] Robert Clifton-Everest. “Optimisations for the LLVM back-end of the Glas-

gow Haskell Compiler”. PhD thesis. Bachelors Thesis, Computer Science and

Engineering Dept., The University of New South Wales, Sydney, Australia,

2012.

[Dei+12] M Deilmann et al. “A guide to vectorization with intel C++ compilers”. In:

Intel Corporation, April (2012).

[PM12] Matt Pharr and William R Mark. “ispc: A SPMD compiler for high-performance

CPU programming”. In: Innovative Parallel Computing (InPar), 2012. IEEE.

2012, pp. 1–13.

[Set12] Intel Xeon Phi Coprocessor Instruction Set. “Architecture Reference Manual”.

In: Intel Corp., September (2012).

[T12] Takenobu T. GHC illustrated. 2012. url: https://takenobu-hs.github.

io/downloads/haskell_ghc_illustrated.pdf (visited on 08/25/2018).

[dev13] GHC devs. LLVM improved. 2013. url: https://ghc.haskell.org/trac/

ghc/wiki/ImprovedLLVMBackend (visited on 08/25/2018).

[JGK13] Youngjoon Jo, Michael Goldfarb, and Milind Kulkarni. “Automatic vectoriza-

tion of tree traversals”. In: Proceedings of the 22nd international conference on

Parallel architectures and compilation techniques. IEEE Press. 2013, pp. 363–

374.

[Liu+13] Hai Liu et al. “The Intel labs Haskell research compiler”. In: ACM SIGPLAN

Notices. Vol. 48. 12. ACM. 2013, pp. 105–116.

[MLP13] Geoffrey Mainland, Roman Leshchinskiy, and Simon Peyton Jones. “Exploit-

ing vector instructions with generalized stream fusio”. In: ACM SIGPLAN

Notices. Vol. 48. 9. ACM. 2013, pp. 37–48.

BIBLIOGRAPHY 102

[POG13] Leaf Petersen, Dominic Orchard, and Neal Glew. “Automatic SIMD vector-

ization for Haskell”. In: ACM SIGPLAN Notices 48.9 (2013), pp. 25–36.

[Gup+15] Suyog Gupta et al. “Deep learning with limited numerical precision”. In: In-

ternational Conference on Machine Learning. 2015, pp. 1737–1746.

[PJ15] Vasileios Porpodas and Timothy M Jones. “Throttling automatic vectoriza-

tion: When less is more”. In: Parallel Architecture and Compilation (PACT),

2015 International Conference on. IEEE. 2015, pp. 432–444.

[Hut16] Graham Hutton. Programming in Haskell. Cambridge University Press, 2016.

[EP17] Richard A Eisenberg and Simon Peyton Jones. “Levity polymorphism”. In:

ACM SIGPLAN Notices. Vol. 52. 6. ACM. 2017, pp. 525–539.

[Mau+17] Luke Maurer et al. “Compiling without continuations”. In: ACM SIGPLAN

Notices. Vol. 52. 6. ACM. 2017, pp. 482–494.

[Sar18] Abhiroop Sarkar. lift-vector: Vector data types and polymorphic SIMD func-

tions for Haskell. https://github.com/Abhiroop/lift-vector. [Online;

accessed 23-August-2018]. 2018.

[PCJ] Angela Pohl, Biagio Cosenza, and Ben Juurlink. “Correlating Cost with Per-

formance in LLVM”. In: ().

APPENDIX A

Intel vs AT&T syntax

The Intel vs AT&T syntax has been a common source of confusion in assembly program-

ming and there has been a number of proposals to unify this two opposing syntaxes, but

currently we deal with this non-uniformity across a number of documentation sources.

The primary difference lies in the order of the operators.

We take a sample syntax:

VADDPS xmm1 xmm2 xmm3

The Intel syntax: The above instruction in Intel syntax implies the value at

register xmm2 and xmm3 are added and the result is stored in xmm1.

AT&T syntax: The meaning of the snippet in AT&T syntax is that the content

of the register xmm1 and xmm2 are added and the result is put in xmm3

For operators with more than two operands the simple rule of thumb is that the

order of the operand in AT&T syntax is exactly the reverse of the order mentioned in

Intel documentation. For this project, GHC currently uses GCC as an assembler and

GCC understands the AT&T syntax. So all of the instructions emitted follow the AT&T

notation.

103

APPENDIX B

Code contributions

This appendix serves to point an interested reader to all the sources of code that we have

written.

B.1 Contributions to GHC

GHC uses the tool Phabricator for reviewing patches. So all of the code changes are

immutable and they are fully available on Phabricator. The experimental changes which

were not pushed on phabricator are made fully open sourced on github. All of the changes

on phabricator has been code reviewed, with the code review history visible.

• SIMD support: https://phabricator.haskell.org/D4813

• Int16#, Word16# support: https://phabricator.haskell.org/D5006

• Int32#, Word32# support: https://phabricator.haskell.org/D5032

• Int64#, Word64# support: https://github.com/Abhiroop/ghc-1/tree/wip-int64

• base changes for lifted integer types: https://github.com/Abhiroop/ghc-1/tree/

wip-int8-redefine

• SIMD integer support (experimental): https://github.com/Abhiroop/ghc-1/tree/

wip-int8-redefine

B.2 The Lift-vector library

The lift-vector library provides polymorphic SIMD functions for vector program-

ming. The entire library with examples and documentations is available here: https:

//github.com/Abhiroop/lift-vector

Although not a very reliable metric but the total lines of code written including

rigorous tests were:

Approximate 1050 lines for each subword register support. For four patches: 1050

* 4 = 4200 loc. For SIMD support = 2100 loc. lift-vector = 829 loc. Total = 7129 loc.

104

