Abstract

Embedded Systems application development has traditionally been carried out
in low-level machine-oriented programming languages like C or Assembler that
can result in unsafe, error-prone and difficult-to-maintain code. Functional
programming with features such as higher-order functions, algebraic data
types, polymorphism, strong static typing and automatic memory management
appears to be an ideal candidate to address the issues with low-level languages
plaguing embedded systems.

However, embedded systems usually run on heavily memory-constrained
devices with memory in the order of hundreds of kilobytes and applications
running on such devices embody the general characteristics of being (i) I/O-
bound, (ii) concurrent and (iii) timing-aware. Popular functional language
compilers and runtimes either do not fare well with such scarce memory
resources or do not provide high-level abstractions that address all the three
listed characteristics.

This work attempts to address this gap by investigating and proposing
high-level abstractions specialised for I/O-bound, concurrent and timing-aware
embedded-systems programs. We implement the proposed abstractions on
eagerly-evaluated, statically-typed functional languages running natively on
microcontrollers. Our contributions are divided into two parts -

Part 1 presents a functional reactive programming language - Hailstorm
- that tracks side effects like I/O in its type system using a feature called
resource types. Hailstorm’s programming model is illustrated on the GRiSP
microcontroller board.

Part 2 comprises two papers that describe the design and implementation of
Synchron, a runtime API that provides a uniform message-passing framework for
the handling of software messages as well as hardware interrupts. Additionally,
the Synchron API supports a novel timing operator to capture the notion of
time, common in embedded applications. The Synchron API is implemented
as a virtual machine - SynchronVM - that is run on the NRF52 and STM32
microcontroller boards. We present programming examples that illustrate
the concurrency, I/O and timing capabilities of the VM and provide various
benchmarks on the response time, memory and power usage of SynchronVM.
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Chapter 1

Introduction

Embedded Systems are ubiquitous artifacts of the digital age. From industrial
machinery and smart buildings to automated highways and cars, embedded
systems remains a driving force behind the automation of the world around us.

Unlike the traditional disciplines of batch computing and data processing,
an embedded system is typically embedded within a larger system that involves
interactions with the physical environment. In the light of this characteristic,
Henzinger and Sifakis [1] defines an “embedded system” as given below -

Definition 1

An embedded system is an engineering artifact involving computation
that is subject to physical constraints. The physical constraints arise
through two kinds of interactions of computational processes with the
physical world: (1) reaction to a physical environment, and (2) execution
on a physical platform.

The first category of interactions gives rise to behavioural requirements
on an embedded system application such as deadline, throughput, response
time, etc., that can have a tangible impact on the physical environment. The
physical interaction component demands that an embedded application be
reactive to any stimulus provided by its environment.

On the other hand, the second category results in more implementation-
specific requirements such as limited power usage, memory usage, etc. These
constraints dictate the economics of embedded systems, which are deployed in
large numbers in most applications areas (like sensor networks and cars) and
require application development platforms that prioritise resource sensitivity
over high performance.

The above discussion highlights two desired behaviours of embedded systems
applications - (i) reactivity and (ii) resource sensitiveness. To delve into the
design and implementation of languages and tools that can embody these
behaviours, we need to understand the behaviours at a more operational level.
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Reactivity

The word “reactive” is heavily overloaded, and it has been used to describe
diverse programming models, libraries and frameworks. When we classify
embedded systems as reactive in nature, we refer to the original definition of
reactive systems, as presented by Harel and Pnueli [2] -

Reactive systems are those that are repeatedly prompted by the outside
world and their role is to continuously respond to external inputs. A
reactive system, in general, does not compute or perform a function,
but is supposed to maintain a certain ongoing relationship, so to speak,
with its environment.

If we compare the description of embedded systems from Definition 1 with
the above definition, we can find parallels between the two. Additionally,
the authors state that reactive systems do not lend themselves naturally to
description in terms of functions and transformations.

Operationally, reactive applications are I/O-intensive, owing to their con-
tinual interactions with the external environment. On top of that, the external
environment can supply a variety of external stimuli, which is best handled by
breaking down an application into several concurrent stimulus handlers.

A third property that arises as a result of interaction with the external
world is the notion of being timing-aware. Reactions to certain specific types
of stimuli often requires responses within a given deadline and at a periodic
rate. Hence, we can compile three important operational properties of reactive
systems, which in turn is embodied in embedded systems application, as follows:

Fundamental Properties

1. I/O-intensive
2. Concurrent
3. Timing-aware

As an example of an embedded system that exhibits the above characteristics,
let us consider a washing machine. It serves information to its user through
an LED-based display while taking input from the user in the form of control
knobs and buttons. The main function of the system is, however, to perform a
wash cycle consisting of heating of water, filling the washing compartment with
water, mixing in laundry detergent at the right time and dosage, spinning the
drum at various speeds at various times and so on. All of this is accomplished
through actuation via microcontroller peripherals such as a timer generating a
Pulse-width Modulation (PWM) signal of the correct frequency and duty cycle
to drive a motor at the desired speed or controlling relays for turning pumps
on and off. All the while, sensors provide information to the microcontroller
about clogged up filters or other non-ideal conditions. Overall, the application
concurrently receives several I/0 impulses while performing time-bound and
periodic operations.
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Resource Sensitiveness

Resource sensitivity drives the economics of embedded systems deployments.
Consider a typical embedded systems application area like wireless sensor
networks (WSNs), where the number of deployed devices ranges from hundreds
to thousands. Such large deployments are made cost-effective by reducing the
price of an individual unit to be in the range of 10 to 100 dollars.

The cost of these devices is cut down by manufacturing them to be heavily
resource-constrained. Such devices, often microcontrollers, have a small die
area with simple circuitry, missing components like on-chip cache, transistors
for superscalar execution, etc. As a result, these devices are power efficient and
require little cooling. They frequently use ARM-based microcontrollers, also
with constrained memory and clock speed. So, we can summarise by saying -

7

Embedded systems become cost-effective by using somewhat old,
resource-constrained but high volume hardware.

Hence, any application development platform for embedded systems, whether
it is a programming language or a runtime, needs to be designed in a resource-
sensitive fashion. In practice, the platform should aim to operate with low
power and memory usage, and support applications that can fulfil their tasks
while running on a relatively weak processor.

At the same time, the growing cost of software development and security is a
part of the resource sensitivity of embedded systems. Ravi et al. [3] propose that
security is an additional dimension to consider in embedded systems, besides
cost, power usage etc. Especially with internet connectivity among embedded
devices, called Internet of Things (IoT), many more security challenges [4, 5]
crop up.

In summary, programming embedded systems is a challenging task that
involves designing I/0-bound, concurrent and timing-aware applications. Ad-
ditionally, the applications should be resource-sensitive in terms of power and
memory usage while accounting for the growing security challenges and soft-
ware development costs. To understand the current state of programming such
embedded applications, we shall next present a short survey on programming
languages and frameworks used in embedded systems.

1.1 Embedded Systems Language Survey

The rapid proliferation of embedded systems has resulted in a large body of
work, in both industry and academia, attempting to design embedded systems
languages. Accordingly, we shall divide our survey into two parts.

1.1.1 Industrial Trends

The landscape of embedded systems language adoption was surveyed by VDC
Research, in 2011 [6], by surveying engineers about the languages that they
most frequently use at work. Fig. 1.1 shows the results of the survey.

Fig 1.1 shows that the C programming language had a major market share
of embedded systems in 2011, followed by C++ and Assembly. Almost ten years
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Figure 1.1: VDC 2011 Embedded Engineer Survey Results [6]

since then, a slightly different perspective (with Python overtaking Assembly
language and Java) can be seen in the Embedded Markets Study conducted by
EETimes in 2019 [7], shown in Fig. 1.21.
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Figure 1.2: EETimes 2019 Embedded Markets Study [7]

To this day, the C language family continues to maintain its dominance in
the embedded systems industry. The second-most popular language, C++, very
often uses a highly specialised subset of the modern C++ standards. These
subsets ban several high-level features of C+4 and constrain the language,
effectively making it behave more like C.

Notable in both surveys is the presence of modelling environments like
MATLAB and LabVIEW. These frameworks are broadly used for designing
entire systems that comprise multiple components. For instance, LabVIEW
uses a data flow-driven programming model to connect several components in

INote that the EETimes survey, unlike the VDC survey, doesn’t allow multiple responses.
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a system. However, the individual components are often configured to generate
C programs, which constitute the heart of the systems.

This omnipresence of C is primarily for the reason that a lot of the legacy
microcontroller vendors supported C compilers. This has reached a point
today such that any new microcontroller that gets introduced into the market
compulsorily supports a C compiler.

One of the key benefit of C is that it is a small and sufficiently low-level
language that can enable the programmer to write resource-conscious programs.
Restricted subsets of C, such as MISRA C [8], enable a programmer to write
deterministic programs with statically predictable object lifetimes.

However, this strength of C as a “low-level systems language” can become
a disadvantage in terms of high cost of software development. C is a memory-
unsafe language, and this has had high costs on systems for the last several
decades. According to the 2021 Common Weakness Enumeration (CWE)
rankings by MITRE [9], out-of-bound writes remains the top vulnerability in
software systems. For that specific CWE, we find the C, C++ and assembly
languages as the most applicable platforms.

Naturally, in other software domains, where resource sensitivity is not a
concern, there has been widescale migration to memory-safe languages like Java
and Python. Now, despite the strong foothold of C in the resource-sensitive
embedded systems space, we can compare between Fig 1.1 and Fig 1.2 to see
Python’s growing popularity, overtaking Assembly and Java.

Python’s dynamic semantics is, in general, highly unsuitable for embedded
systems. However, the popularity and syntactic familiarity of the language
has resulted in a Python implementation - Micropython [10], which is gain-
ing traction in the embedded systems space. Micropython implements the
Python language with some minor differences from the reference implemen-
tation CPython, such as a compact representation of integers, restrictions on
Python standard libraries, etc.

Although Python guarantees memory safety over C, it lacks in terms of
expressing concurrent programs. The Python Language Reference defines a
single-threaded language and the reference implementation CPython holds a
Global Interpreter Lock (GIL) that prevents true multithreading. The language
also lacks any fundamental support for real-time computations. Despite these
limitations, the Micropython runtime provides a more resource-sensitive imple-
mentation compared to CPython, which perhaps explains the steady adoption
of the language in the embedded space.

Having observed the industrial trends among embedded systems languages,
we shall now turn our focus on research-oriented languages in this space.

1.1.2 Research Languages

The pervasiveness of embedded systems and the age of the research field has
resulted in diverse strands of research on languages, frameworks and tooling
infrastructure for embedded systems. Instead of an exhaustive literature survey,
we shall selectively look at some of the past influential lines of work and an
emerging programming model that could potentially impact the field.
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Synchronous Languages

One of the most successful lines of research on embedded systems language
is the synchronous language family. The most influential languages from this
family are the three French languages - Esterel [11], Lustre [12], and Signal [13].
They are all based on a fundamental synchrony hypothesis that states -

All reactions are assumed to be instantaneous - and therefore atomic
in any possible sense.

The above essentially imposes a logical notion of time where all operations
such as instruction-sequencing, inter-process communication, data handling,
etc., happen instantaneously, taking no time. In practical implementations, the
synchronous hypothesis is approximated to the assumption - a program can
react to an external event before any further event occurs. The occurrence of
an external event amounts to a clock tick in the logical clock.

The synchrony hypothesis is quite useful in the context of real-time systems
to eliminate any jitter from the reaction time of a program. To realise the
hypothesis in practice, there has been a long history of research on various
compilation techniques for Esterel [14], which has influenced the other syn-
chronous language implementations as well. These techniques have enabled
synchronous languages to produce programs that occupy bounded memory.

The synchronous languages, however, do not aim to target all classes of
reactive embedded systems. As discussed by de Simone et al. [15], “the focus of
synchronous languages is to allow modeling and programming of systems where
cycle (comptation step) precision is needed”. Cycle precision of embedded
systems can be found in areas such as hardware (clock cycles) and avionics.
However, several classes of applications, like IoT, do not have a regular, periodic
clock that drives external events. The logical clock ticks for several such systems
are sparsely spread. There has been recent work on the sparse synchronous
model [16] to address such systems in the synchronous framework.

Additionally, synchronous languages often do not support general syntactic
constructs of a language. For instance, Esterel divides a reactive program
into three parts - (i) the I/O-interfacing layer, (ii) the reactive kernel and (iii)
data-handling layer [11]. Out of the three layers, Esterel is used to describe
only the reactive kernel. The data handling, involving classical computations, is
handled by some form of a host language, where Esterel is embedded. Similarly,
the I/O-interfacing, such as interrupt-handling, reading/writing of data, etc.,
which constitutes a large part of a reactive program, has to be designed entirely
in a host language, very likely C in the case of embedded systems.

Giotto

Closely related to the synchronous family of languages is the time-triggered
hard real-time language - Giotto [17]. Giotto draws inspiration from the
time-triggered architecture (TTA) [18] that found application in safety-critical
systems. In contrast with event-triggered (or event-driven) systems, time-
triggered systems like Giotto operate solely according to a pre-determined and
set task schedule.

Giotto operates under what it calls fized logical execution time (FLET)
assumption, which states -
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The execution times associated with all computation and commu-
nication activities are fixed and determined by the model, not the
platform. In Giotto, the logical execution time of a task is always
exactly the period of the task, and the logical execution times of
all other activities are always zero.

The above differs from the synchrony hypothesis in the sense that it is a
formally weaker notion of value propagation (zero delay vs unit delay). The
implication of this difference affects the compilation process of the respective
languages; whereas, in the compilation of synchronous languages, the focus is on
fixed-point analysis; in the case of Giotto, the importance is on schedulability
analysis [19]. Accordingly, Giotto abstracts away its scheduling process to a
separate virtual machine called the Embedded Machine [20].

Giotto, as well as the synchronous languages, target the same category of
embedded applications - real-time control applications with a periodic heartbeat.
Likewise, both programming models are ill-suited for applications with a sparse
and aperiodic control pulse.

Timber

The Timber programming language [21] was an attempt to design a high-level
language targeting embedded devices. Timber wanted to bring the object-
oriented programming paradigm to the embedded systems space. One of the
advantages of an object-oriented language - a principled state management
discipline - would be an improvement over the low-level practices such as
state-transition tables, being used in C. Although there exist other real-time,
object-oriented languages like RTSJ [22], they heavily restrict any form of
dynamic object behaviour.

Timber features a rigorous type system and formal semantics to enable
the construction of deterministic programs. The semantics of Timber operates
under a central property -

Each reaction will terminate independent of further events, hence a
system described in Timber will be responsive at all times (under
the limitation of available CPU resources) and free of deadlocks.

The above property serves as the foundation for further system analyses
on Timber. The language, additionally, guarantees mutual exclusion over any
form of concurrent state-accesses within an application through its syntactic
constructs. Timber also provides a rich set of temporal primitives, such as
before, after, etc., for specifying the absolute time at which a particular reaction
should occur.

The major hurdle in realising the Timber project was designing a language
runtime that could fully support dynamic object-oriented behaviour in a
resource-constrained scenario. Inevitably, this challenge requires the design of
advanced garbage collection mechanisms that can support seamless pausing and
incremental collection techniques. There are brief allusions to an experimental
interruptible reference-counting collector in the Timber technical report [23], of
which we could not find any peer-reviewed publication. There has, however,
been a theoretical description of an incremental garbage collector [24] and
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its scheduling for real-time systems [25] from the team behind Timber. The
development of the project, based on postings to the Timber mailing list, seems
to have terminated around 2009-10.

Embedded Domain-Specific Languages

A well-studied line of research is designing restricted languages for specific
domains, such as embedded systems, and then, instead of constructing a
full-fledged compiler and runtime, utilising the compiler infrastructure of a
general-purpose language. Such languages are termed embedded domain-
specific languages (EDSLs) [26] and have been used to program a variety of
embedded applications.

The Copilot EDSL [27] has been used to design hard real-time runtime
monitoring tools. It is a stream-based dataflow language that can generate
small constant-time and constant-space C programs, implementing embedded
monitors. Another example of an embedded-system EDSL is Ivory [28], which
enables writing memory-safe C programs.

The advantage of EDSLs is that they bring high-level abstraction from
the host language, such as Haskell, to the programming of fairly low-level
applications. Additionally, EDSLs have very little runtime overheads compared
to a high-level language that is natively run on embedded systems.

However, programming with an EDSL often involves learning two sets
of semantics - one of the host language and the other of the EDSL itself.
Frequently, the two sets of semantics oppose each other, and the resultant
program is challenging to maintain and understand. Hickey et al. [29] discuss
the lessons learned in programming an embedded systems application using an
EDSL and cite challenges such as illegible type-error messages and undefined
C-program generation.

Functional Reactive Programming

The programming model of Functional Reactive Programming (FRP) was
born to declaratively express graphical programs [30]. A fundamental differ-
ence of this programming model from the synchronous model is the notion
of continuous-time rather than discrete. The notion of continuous-time is
useful for declaratively expressing such things as mouse movement in graphical
applications.

FRP models continuous objects through an abstraction it calls Behaviour.
It also provides an abstraction called Event to model discrete operations such as
mouse-clicks. Along with behaviours and events FRP provides a series of higher-
order functions and combinators to describe reactive graphical applications.

Although initially limited to graphics, the programming model was found
suitable for describing modern web applications via popular Javascript libraries
like React [31]. Theoretically, the reactive nature of the model seems to be a
good fit for embedded systems.

However, one of the most challenging aspects of FRP has been realising
the model of continuous-time in practical implementations. Most original
implementations of FRP suffered from severe memory leaks. There has been
work [32] to fix these leaks but often at the cost of expressivity of the model.
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Another challenge of FRP is that it is often embedded? within a general-
purpose language like Haskell, which is not exclusively designed for highly
reactive applications. As a result, there is a lot of unnecessary plumbing
required to make the internal FRP model interact with the external environment
through the I/O monad [33].

In general, there is a lot of proliferation in the variety of APIs and implemen-
tations available for FRP. There are studies [34] to analyse the strengths and
weaknesses of the different design choices. There has also been experiments on
distributing an FRP runtime across multiple devices [35]. From the perspective
of embedded systems, there has been past research on highly-restricted FRP
implementations targeting resource-constrained PIC microcontrollers [36].

Overall, the FRP programming model has potential application for embed-
ded systems, but there is still no consensus on the ideal APT or its implemen-
tation. There needs to be more research on designing resource-sensitive FRP
runtimes as well as on bringing time-critical computations to FRP.

1.2 The Gap

Our survey, in the last section, has shown the industry trends as well as research
activities related to embedded systems languages. At this point, we would
like to remind the reader about the critical properties that are essential for
designing an embedded-systems language in the tables below -

Resource-sensitivity

1. I/O-bound 1. Low power
2. Concurrent 2. Low memory
3. Timing-aware 3. Low clock-cycles

While the C programming language’s closeness to the hardware allows a C
programmer to write resource-sensitive programs, it is plagued with security
vulnerabilities discussed earlier. Additionally, C is not a concurrent language.
There are some ad-hoc libraries such as Protothreads [37] to mimic concurrent
behaviour, but the intrinsic language semantics is not concurrent. There is
a gap for a high-level language that embodies the reactive properties shown
above while running programs in a resource-sensitive manner.

The research languages that we have discussed all attempt to address this
gap. However, they fall short in certain areas. For instance, the synchronous
languages and Giotto are well designed for timing-critical applications but
exclusively target periodic applications with a regular heartbeat. Additionally,
the I/O-handling, which constitutes a major part of typical embedded systems
applications, is excluded from the programming models.

Finally, most other high-level programming abstractions, such as objects in
Timber or Functional Reactive Programming, lack resource-sensitive implemen-
tations. Given this state of the ecosystem, we attempt to address the following
research question -

2refers to the embedding of a language, not to be confused with embedded systems
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Research Question - What are the fundamental high-level abstractions that
address the reactive nature of embedded systems, and how should these abstrac-
tions be implemented in a resource-sensitive manner?

1.3 Contributions

The hope, through our contributions, is to present high-level abstractions that
could have resource-sensitive implementations. Our contributions are broadly
divided into two parts. The first part comprises a paper that describes an
experimental reactive programming language. The second part contains two
papers describing the design of a high-level API and its runtime implementation
for embedded systems. We briefly summarise them in the following section -

Part 1

1.3.1 Paper A : Hailstorm

The first paper presents Hailstorm [38], a statically-typed, purely-functional,
reactive domain-specific language. It uses the Arrowized FRP [39] formulation
of FRP to program embedded devices. The most central type in the language
is that of a signal function, SF' a b, where a and b denote polymorphic type
variables. Signal functions are representations of a dataflow from type a to b.

We further extended this representation with the concept of a resource
type [40]. A resource type is type-level label that can be used to uniquely
identify various external resources. The new type of a signal function becomes
SF r a b, where r denote a polymorphic resource label. For instance, two
sensors that can supply an Int and Float value type respectively, will have the
following types in Hailstorm -

resource S1
resource S2

sensorl :: SF S1 () Int
sensor?2 :: SF S2 () Float

The unit type - () - above indicates that the sensor interacts with the
external world. Hailstorm, additionally, provides a family of combinators to
declaratively compose the data flowing through the various signal functions -

mapSignal# : (a -> b) -> SF Empty a b

(>>>) : SFrpab->8Fry bc->8F (riUry) ac

(&&&) : SF ry ab -> SF rp a c -> SF (ryUry) a (b, c)
(¥*x) : SFry ab ->8F ryo cd->SF (riUry) (a, c) (b, d)

The technical details about the type-level union and its semantics are
described in-depth in the paper. As discussed earlier, FRP models are often
embedded within a host language, which make any form of interaction with
the external world quite syntactically awkward. The introduction of resource
types is done to resolve this issue, and we detail, using examples, in the paper
on how a resource label can allow the correct composition of signal functions.
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The Hailstorm language has an LLVM and Erlang backend. The Erlang
backend, in particular, was used to prototype experiments on the GRiSP mi-
crocontroller boards. Our evaluations consisted of writing very small prototype
applications in Hailstorm like a watchdog process, a simplified traffic light sys-
tem and a railway level-crossing simulator. One of the complications associated
with resource types is the linear increase in the number of type labels as the
number of resources (i.e. external inputs) increases, which often overshadow
the type-signatures within the programs.

We also carried out micro-benchmarks on the memory consumption and
response time of the programs. The memory footprint of the Hailstorm pro-
grams was in the order of 2-3 MB, owing to the size of the Erlang runtime.
The response time of the programs was in the range of 100-150 microseconds.

Hailstorm was primarily an experiment to address the I/O-bound nature of
embedded applications. Concurrency in FRP is implicit, and as for timing, the
language lacked any form of real-time APIs. Additionally, the code generated
from Hailstorm is polling-based, which is typically energy-inefficient compared
to event-based programs.

To remedy the above shortcomings, we realised that Hailstorm or any
reactive programming model, in general, are too high-level. There is a missing
layer of abstraction in between, as shown in Fig. 1.3, something akin to a
language runtime.

N N O Y

HAILSTORM Other programming

models
Missing
Abstraction

o
° oo
=
OJo]

ESTEREL

Figure 1.3: A missing layer of abstraction

The expectation of this layer is to be more low-level such that it can handle
the complexities of callback-based driver interfaces. It should naturally feature
explicit concurrency to capture the concurrent nature of the hardware while
including some notion of timing. Additionally, it should provide a resource-
sensitive runtime for supporting various programming models. The next part
discusses our attempt at such a project.

Part II

Our discussions till now have concentrated on programming languages for
embedded systems. Now, as we descend into a lower layer of abstraction,
we shall briefly survey some low-level frameworks, such as virtual machines,
targeting embedded devices.



12 CHAPTER 1. INTRODUCTION

Low-level tools for Embedded Systems
Virtual Machines

There have been attempts at porting popular general-purpose languages to
run on microcontrollers using virtual machines. Some examples are OMicroB
[41] supporting OCaml, Picobit [42] supporting Scheme and AtomVM [43]
supporting Erlang. In the real-time space, a safety-critical VM that can provide
hard real-time guarantees on Real-Time Java programs is the FijiVM [44]
implementation. The FijiVM project invented the Schism garbage collector
[45], a concurrent garbage collector that can handle real-time applications on
multicore embedded devices.

WebAssembly Micro Runtime

The WebAssembly project (WASM) has spawned sub-projects like WebAssem-
bly Micro Runtime (WAMR) [46] that allows running WASM-supported lan-
guages on microcontrollers. Language like JavaScript and Rust currently have
work-in-progress and experimental backends supporting WebAssembly. Reliable
benchmarks on how those languages and their runtimes perform on microcon-
trollers are still not available, and research on optimizing them specifically for
microcontrollers is still at a nascent stage.

Operating Systems

The last layer of abstraction that lies before the hardware is the operating sys-
tem. Typically in the context of embedded systems, these are often specialised
with real-time APIs and are called real-time operating systems (RTOS). Exam-
ples of popular RTOSes are Zephyr OS [47], ChibiOS [48] and FreeRTOS [49].

Generally, RTOSes are much lighter than desktop operating systems. They
typically come equipped with a scheduler, kernel services and something called a
hardware abstraction layer (HAL). A HAL serves as an abstraction for accessing
various microcontroller peripherals like GPIO, ADC, SPI and so on and also
take care of clock-related and board-level initialization.

Apart from the core services discussed above, RTOSes vary in terms of
higher levels of abstractions offered. FreeRTOS is more bare-bones compared
to something like Zephyr OS, which provides network drivers, implementations
of high-level networking protocols, etc. The programming language supported
by all of the above RTOSes is exclusively C.

1.3.2 Papers B & C: Synchron

Our current project, Synchron, attempts to fill the missing abstraction of
Fig. 1.3 such that high-level programming models, like FRP, can be hosted
more naturally on embedded devices. Synchron is a specialised runtime API
designed for expressing (i) I/O-bound, (ii) concurrent and (iii) timing-aware
programs. The architecture of Synchron consists of three parts -

e Runtime - The principal component of Synchron is a specialised runtime
consisting of nine built-in operations and a scheduler. The runtime
allows the creation of concurrent user-level processes (green threads)
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and provides operators for declaratively expressing interactions between
the software processes and hardware interrupts. The power-efficient
scheduling of the processes is managed by the Synchron scheduler.

e Low-level Bridge - The Synchron runtime interacts with the various
hardware drivers through a low-level bridge interface. The interface is
general enough such that it can be implemented by both synchronous
drivers (like LED) as well as asynchronous drivers (like UART).

e Underlying OS - The Synchron runtime is run atop an underlying RTOS
such as ZephyrOS or ChibiOS. The OS supplies the actual hardware
drivers that implements the low-level bridge interface described above.
We have designed our runtime interfaces in a modular fashion such that
other operating systems, such as FreeRTOS, can be easily plugged in.

Our implementation of Synchron is in the form of a bytecode-interpreted
virtual machine called the SynchronVM. The execution engine of SynchronVM
is based on the Categorical Abstract Machine [50], which supports the cheap
creation of closures to support functional programming languages. Fig. 1.4
below provides a graphical description of the architecture of Synchron.

SynchronVM Process1 Process2 ‘ Process3 ‘ Process4
processes
C99 SynchronVM Runtime System PR 1
Low-level Bridge |
OS/HAL Wall-clock time subsystem Drivers
dependent
Zephyr/ChibiOs

Figure 1.4: Architecture of Synchron

The Synchron API

The core API of Synchron comprises of nine functions. We show the type-
signatures of those functions in Fig. 1.5 below.

spawn : (() -> ()) -> ThreadId

channel : () -> Channel a

send : Channel a -> a -> Event ()

recv : Channel a -> Event a

choose : Event a -> Event a -> Event a
wrap : Event a -> (a -> b) -> Event b
sync : Event a -> a

syncT : Time -> Time -> Event a -> a

spawnExternal : Channel a -> Driver -> ExternalThreadId

Figure 1.5: The Synchron API
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The Synchron API is derived from Concurrent ML (CML) [51], which is
a synchronous message-passing—based concurrency model. The fundamental
difference of CML from standard synchronous message-passing models, such as
communicating sequential processes [52], is the separation between the intent
and act of communication. This separation is captured by first-class values
called Events.

An event is an abstraction to represent deferred communication. In contrast
with a rudimentary protocol involving single message sends and receives, the
CML combinators such as wrap and choose can compose elaborate communi-
cation protocols involving multiple sends and receives.

Our extension of the CML API involves the last two functions in Fig. 1.5 -
syncT and spawnExternal. The first extension, syncT, allows a programmer
to specify the exact timing window at which an event synchronisation should
happen. The first argument to syncT represents the baseline of the operation,
while the second argument is the deadline. The syncT operator provides an
opportunity to dynamically prioritise concurrent timed processes instead of
static-priority APIs provided by typical RTOSes.

The second extension, spawnExternal, models the external hardware
drivers as processes themselves. Modelling the drivers as processes allows
a programmer to apply the entire message-passing API to low-level drivers
interactions such as interrupt-handling. The serialisation and deserialisation
between software messages and hardware interrupts are handled by the runtime.

We describe our design and implementation of the SynchronVM in the form
of two papers [53,54]. Do note that in the first of the two papers, we call the
VM “SenseVM”. However, we later renamed the VM, keeping in mind the
synchronous nature of our API, to SynchronVM.

SynchronVM currently supports the nRF52840DK and the STM32F4 micro-
controller boards. We carried out our evaluations of the SynchronVM with the
help of a musical application, which involves some soft real-time components.
Other micro-benchmarks were carried out on response times, memory usage
and power consumption.

Our preliminary results are encouraging and show that in terms of power
usage, a program running on SynchronVM has the same amount of momentary
power consumption as a C program written using callback registration. Of
course, if the power usage is integrated over time, a C program would be
more power-efficient. However, the trade-off of programming with high-level
abstractions is an attractive proposition.

In terms of memory usage, a SynchronVM program occupies tens to hun-
dreds of kilobytes, which is beneficial for memory constrained microcontrollers.
The response times of our benchmarks are typically 2-3x times slower than
the C equivalents. A point to be noted here is that our execution engine is
based on the categorical abstract machine, which is known to be four times
slower, on average, than the Zinc abstract machine [55]. Additionally, we use a
basic stop-the-world, non-moving, mark-and-sweep garbage collector, which
contributes to the slowness of the response times.

Overall, SynchronVM provides a possible answer to the research question
that we posed earlier. We have identified a set of high-level abstractions for
writing concurrent, I/O-bound and timing-aware embedded system programs.
We further provide a resource-sensitive implementation of the proposed abstrac-
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tions and benchmark our implementation. Our initial results on memory and
power usage look promising, while response times could be further improved.
There are several open avenues for optimisations, such as moving to a faster
execution engine, switching to a register-based VM, performing ahead-of-time
compilation and using advanced generational garbage collectors. Aside from
the various optimisation opportunities, in the next section, we discuss the more
research-oriented challenges that we hope to address in the future.

1.4 Future Work

1.4.1 Region-based Memory Management

One of the most critical challenges in hosting a high-level programming language
on embedded systems is the aspect of dynamic memory management. Object-
oriented as well as functional programming paradigms feature plenty of dynamic
memory allocation. Typically managed runtimes employ garbage collectors
to deallocate the dynamically allocated memory. However, the points of time
where the memory will be deallocated by the garbage collector or the total time
required for deallocation is unpredictable. This unpredictability complicates
the scheduling of real-time applications (especially hard real-time) on embedded
systems [56].

A promising line of work to mitigate the non-determinism discussed above
is the region-based memory management (RBMM) discipline [57]. RBMM
arranges the memory into a stack of regions that gets deallocated in a last-in-
first-out fashion. The principal component of RBMM is a series of type-based
static analysis passes, called region inference [58], that conservatively determines
the scope of a piece of dynamic memory. Accordingly, it then allocates the
memory into the ideal position within the region stack identified by the analysis.

The advantage of RBMM is that memory deallocation happens in constant
time. Additionally, the structure of the program provides insights into the
scoping pattern that dictates the lifetime of the various memory allocations.
It has the potential to be used in embedded systems applications as a lot of
typical C programs involve identifying the same static arrangement of the
memory layout, which RBMM can infer automatically.

However, the authors and implementers of RBMM have identified weaknesses
of the approach that often lead to memory leaks in practical programs [59]. In
most cases, RBMM has to be used in conjunction with a garbage collector, which
reintroduces the same unpredictability that real-time applications preferably
avoid. Also, region-based memory leaks were found to be notoriously hard to
detect and then debug, which often involved redefining the program structure.

A recent study [60] has analysed the behaviour of region-based, forever-alive
server programs and found the weakness to be that the region-inference algo-
rithm conservatively places all of the memory into a global infinite region, which
continues growing till memory leaks. A possible research track would be identi-
fying the root cause behind this conservative estimation of the region-inference
algorithm and employing more optimistic region-allocation policies, which could
roll back the allocation by dynamically moving the data across regions. Also,
recent research on integrating generational garbage collection with RBMM [61]
is a prospective memory management strategy for SynchronVM.
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1.4.2 Security of Embedded Systems

One of the most vital areas of research interest is the security of embedded sys-
tems. As discussed in the earlier sections, low-level, memory-unsafe languages
such as C and C++ introduce a vast array of memory-related vulnerabilities.
The introduction of high-level, managed programming languages aims to reduce
a large portion of such security weaknesses.

However, there exists a large class of hardware-based vulnerabilities [62]
as well as communication protocol threats [63], which cannot be prevented by
simply using high-level languages. Their mitigation requires advanced security
techniques such as specialised hardware support.

ARM microcontrollers (Cortex-M), which universally dominates the em-
bedded systems market, provides a special security mode called the ARM
TrustZone [64]. There has been a recent surge of interest from the security
community in TrustZone [65], which allows isolating critical security firmware,
assets and private information. Aside from isolation, TrustZone also provides
building blocks to implement end-to-end security solutions, namely, trusted
1/0 paths, secure storage, and remote attestation.

Accessing the TrustZone features require interactions with very low-level C
and assembly APIs. An improvement here would be using the ARM TrustZone
API and constructing secure application compartments on SynchronVM. Con-
sequently, applications hosted on the SynchronVM, using any host language,
could isolate their security-sensitive logic from the rest of the application. There
has been a related project in this field for desktop applications running on the
NET language runtime called the Trusted Language Runtime [66].

CHERI

An exciting new development has been the CHERI capability model [67], which
extends the RISC instruction set with capability-based memory protection
to mitigate common memory vulnerabilities. The very recent release of the
ARM Morello board [68], which integrates the CHERI capability model into
actual physical hardware, provides an excellent opportunity to experiment with
building higher-level platforms such as operating systems and virtual machines
that test the utility of the CHERI model.

A research avenue comparable with the ARM TrustZone-based secure
compartments would be using the CHERI capabilities for compartmentalisation
in the SynchronVM. There has been recent work to port the C/C++-based
Boehm-Demers-Weiser garbage collector to CHERI hardware [69], which could
serve as an experimental memory manager to support the SynchronVM (written
entirely in C99) on such devices.
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