
Thesis for The Degree of Licentiate of Engineering

Functional Programming for Embedded Systems

Abhiroop Sarkar

Division of Computing Science
Department of Computer Science & Engineering

Chalmers University of Technology | University of Gothenburg
Gothenburg, Sweden, 2022

Functional Programming for Embedded Systems

Abhiroop Sarkar

Copyright ©2022 Abhiroop Sarkar
except where otherwise stated.
All rights reserved.

Department of Computer Science & Engineering
Division of Computing Science
Chalmers University of Technology and Gothenburg University
Gothenburg, Sweden

This thesis has been prepared using LATEX.
Printed by Chalmers Digitaltryck,
Gothenburg, Sweden 2022.

ii

“The price of reliability is the pursuit
of the utmost simplicity.”

- Tony Hoare

iv

Abstract

Embedded Systems application development has traditionally been carried out
in low-level machine-oriented programming languages like C or Assembler that
can result in unsafe, error-prone and difficult-to-maintain code. Functional
programming with features such as higher-order functions, algebraic data
types, polymorphism, strong static typing and automatic memory management
appears to be an ideal candidate to address the issues with low-level languages
plaguing embedded systems.

However, embedded systems usually run on heavily memory-constrained
devices with memory in the order of hundreds of kilobytes and applications
running on such devices embody the general characteristics of being (i) I/O-
bound, (ii) concurrent and (iii) timing-aware. Popular functional language
compilers and runtimes either do not fare well with such scarce memory
resources or do not provide high-level abstractions that address all the three
listed characteristics.

This work attempts to address this gap by investigating and proposing
high-level abstractions specialised for I/O-bound, concurrent and timing-aware
embedded-systems programs. We implement the proposed abstractions on
eagerly-evaluated, statically-typed functional languages running natively on
microcontrollers. Our contributions are divided into two parts -

Part 1 presents a functional reactive programming language - Hailstorm
- that tracks side effects like I/O in its type system using a feature called
resource types. Hailstorm’s programming model is illustrated on the GRiSP
microcontroller board.

Part 2 comprises two papers that describe the design and implementation of
Synchron, a runtime API that provides a uniform message-passing framework for
the handling of software messages as well as hardware interrupts. Additionally,
the Synchron API supports a novel timing operator to capture the notion of
time, common in embedded applications. The Synchron API is implemented
as a virtual machine - SynchronVM - that is run on the NRF52 and STM32
microcontroller boards. We present programming examples that illustrate
the concurrency, I/O and timing capabilities of the VM and provide various
benchmarks on the response time, memory and power usage of SynchronVM.

Keywords

functional programming, embedded systems, virtual machine, concurrency,
timing, language runtime

Acknowledgment

I would like to acknowledge and give my warmest thanks to my supervisor,
Mary Sheeran, for her guidance and support throughout the journey that led
to this work. A special thanks should go out to my co-supervisor, Bo Joel
Svensson, for inspiring and working with me on various parts of this research.
Our work together has always been a reminder of why I enjoyed tinkering with
systems in the first place.

To my friends, spread across different corners of the globe now, remember
the time that we spent together, and our conversations have inspired me and this
work in some beautiful, intangible form. Finally, a special acknowledgement goes
to my family for their unwavering support in all of my endeavours. Everything
that I am is because of you!

vii

List of Publications

Appended publications

This thesis is based on the following publications:

[A] Abhiroop Sarkar, Mary Sheeran “Hailstorm: A Statically-Typed, Purely
Functional Language for IoT Applications”
Proceedings of the 22nd International Symposium on Principles and
Practice of Declarative Programming. ACM, 2020.

[B] Abhiroop Sarkar, Robert Krook, Bo Joel Svensson, Mary Sheeran “Higher-
Order Concurrency for Microcontrollers”
Proceedings of the 18th ACM SIGPLAN International Conference on
Managed Programming Languages and Runtimes. ACM, 2021.

[C] Abhiroop Sarkar, Bo Joel Svensson, Mary Sheeran “Synchron - An API
and Runtime for Embedded Systems”
Under Review.

ix

x

Research Contribution

Paper A

I was responsible for the research idea and implementation of the compiler
presented in the paper. I wrote all the major sections of the paper with
suggestions for the paper structure, edits and final enhancements made by my
supervisor Mary Sheeran.

Paper B

I and Bo Joel Svensson, together, develop and maintain the virtual machine
presented in the paper. I proposed the core research idea presented in the
paper. I also designed and implemented the middleware, assembler, bytecode
interpreter and major parts of the runtime. Bo Joel Svensson wrote the low-level
bridge, the garbage collector and collaborated with me on several important
design decisions within the runtime. The frontend language was written by
Robert Krook.

I wrote all the major sections of the paper with final edits and enhancements
provided by Bo Joel Svensson and Mary Sheeran. The experiments were
conducted by Bo Joel Svensson and myself.

Paper C

This work builds on the work of Paper B and the contributions listed above
apply here. I proposed the timing API and implemented the core parts of
it within the runtime. The low-level timing subsystem was written by Bo
Joel Svensson. The experiments presented in the paper were done by Bo Joel
Svensson and myself.

I wrote the paper in collaboration with Bo Joel Svensson. Several edits and
enhancements were proposed by Mary Sheeran.

xii

Contents

Abstract v

Acknowledgement vii

List of Publications ix

Personal Contribution xi

1 Introduction 1
1.1 Embedded Systems Language Survey 3

1.1.1 Industrial Trends . 3
1.1.2 Research Languages . 5

1.2 The Gap . 9
1.3 Contributions . 10

1.3.1 Paper A : Hailstorm . 10
1.3.2 Papers B & C: Synchron 12

1.4 Future Work . 15
1.4.1 Region-based Memory Management 15
1.4.2 Security of Embedded Systems 16

Bibliography 17

2 The Hailstorm IoT Language 26

3 Higher-Order Concurrency for Microcontrollers 44

4 Synchron - An API and Runtime for Embedded Systems 55

xiii

xiv CONTENTS

Chapter 1

Introduction

Embedded Systems are ubiquitous artifacts of the digital age. From industrial
machinery and smart buildings to automated highways and cars, embedded
systems remains a driving force behind the automation of the world around us.

Unlike the traditional disciplines of batch computing and data processing,
an embedded system is typically embedded within a larger system that involves
interactions with the physical environment. In the light of this characteristic,
Henzinger and Sifakis [1] defines an “embedded system” as given below -

Definition 1

An embedded system is an engineering artifact involving computation
that is subject to physical constraints. The physical constraints arise
through two kinds of interactions of computational processes with the
physical world: (1) reaction to a physical environment, and (2) execution
on a physical platform.

The first category of interactions gives rise to behavioural requirements
on an embedded system application such as deadline, throughput, response
time, etc., that can have a tangible impact on the physical environment. The
physical interaction component demands that an embedded application be
reactive to any stimulus provided by its environment.

On the other hand, the second category results in more implementation-
specific requirements such as limited power usage, memory usage, etc. These
constraints dictate the economics of embedded systems, which are deployed in
large numbers in most applications areas (like sensor networks and cars) and
require application development platforms that prioritise resource sensitivity
over high performance.

The above discussion highlights two desired behaviours of embedded systems
applications - (i) reactivity and (ii) resource sensitiveness. To delve into the
design and implementation of languages and tools that can embody these
behaviours, we need to understand the behaviours at a more operational level.

1

2 CHAPTER 1. INTRODUCTION

Reactivity

The word “reactive” is heavily overloaded, and it has been used to describe
diverse programming models, libraries and frameworks. When we classify
embedded systems as reactive in nature, we refer to the original definition of
reactive systems, as presented by Harel and Pnueli [2] -

Definition 2

Reactive systems are those that are repeatedly prompted by the outside
world and their role is to continuously respond to external inputs. A
reactive system, in general, does not compute or perform a function,
but is supposed to maintain a certain ongoing relationship, so to speak,
with its environment.

If we compare the description of embedded systems from Definition 1 with
the above definition, we can find parallels between the two. Additionally,
the authors state that reactive systems do not lend themselves naturally to
description in terms of functions and transformations.

Operationally, reactive applications are I/O-intensive, owing to their con-
tinual interactions with the external environment. On top of that, the external
environment can supply a variety of external stimuli, which is best handled by
breaking down an application into several concurrent stimulus handlers.

A third property that arises as a result of interaction with the external
world is the notion of being timing-aware. Reactions to certain specific types
of stimuli often requires responses within a given deadline and at a periodic
rate. Hence, we can compile three important operational properties of reactive
systems, which in turn is embodied in embedded systems application, as follows:

Fundamental Properties

1. I/O-intensive
2. Concurrent
3. Timing-aware

As an example of an embedded system that exhibits the above characteristics,
let us consider a washing machine. It serves information to its user through
an LED-based display while taking input from the user in the form of control
knobs and buttons. The main function of the system is, however, to perform a
wash cycle consisting of heating of water, filling the washing compartment with
water, mixing in laundry detergent at the right time and dosage, spinning the
drum at various speeds at various times and so on. All of this is accomplished
through actuation via microcontroller peripherals such as a timer generating a
Pulse-width Modulation (PWM) signal of the correct frequency and duty cycle
to drive a motor at the desired speed or controlling relays for turning pumps
on and off. All the while, sensors provide information to the microcontroller
about clogged up filters or other non-ideal conditions. Overall, the application
concurrently receives several I/O impulses while performing time-bound and
periodic operations.

1.1. EMBEDDED SYSTEMS LANGUAGE SURVEY 3

Resource Sensitiveness

Resource sensitivity drives the economics of embedded systems deployments.
Consider a typical embedded systems application area like wireless sensor
networks (WSNs), where the number of deployed devices ranges from hundreds
to thousands. Such large deployments are made cost-effective by reducing the
price of an individual unit to be in the range of 10 to 100 dollars.

The cost of these devices is cut down by manufacturing them to be heavily
resource-constrained. Such devices, often microcontrollers, have a small die
area with simple circuitry, missing components like on-chip cache, transistors
for superscalar execution, etc. As a result, these devices are power efficient and
require little cooling. They frequently use ARM-based microcontrollers, also
with constrained memory and clock speed. So, we can summarise by saying -

Embedded systems become cost-effective by using somewhat old,
resource-constrained but high volume hardware.

Hence, any application development platform for embedded systems, whether
it is a programming language or a runtime, needs to be designed in a resource-
sensitive fashion. In practice, the platform should aim to operate with low
power and memory usage, and support applications that can fulfil their tasks
while running on a relatively weak processor.

At the same time, the growing cost of software development and security is a
part of the resource sensitivity of embedded systems. Ravi et al. [3] propose that
security is an additional dimension to consider in embedded systems, besides
cost, power usage etc. Especially with internet connectivity among embedded
devices, called Internet of Things (IoT), many more security challenges [4, 5]
crop up.

In summary, programming embedded systems is a challenging task that
involves designing I/O-bound, concurrent and timing-aware applications. Ad-
ditionally, the applications should be resource-sensitive in terms of power and
memory usage while accounting for the growing security challenges and soft-
ware development costs. To understand the current state of programming such
embedded applications, we shall next present a short survey on programming
languages and frameworks used in embedded systems.

1.1 Embedded Systems Language Survey

The rapid proliferation of embedded systems has resulted in a large body of
work, in both industry and academia, attempting to design embedded systems
languages. Accordingly, we shall divide our survey into two parts.

1.1.1 Industrial Trends

The landscape of embedded systems language adoption was surveyed by VDC
Research, in 2011 [6], by surveying engineers about the languages that they
most frequently use at work. Fig. 1.1 shows the results of the survey.

Fig 1.1 shows that the C programming language had a major market share
of embedded systems in 2011, followed by C++ and Assembly. Almost ten years

4 CHAPTER 1. INTRODUCTION

Figure 1.1: VDC 2011 Embedded Engineer Survey Results [6]

since then, a slightly different perspective (with Python overtaking Assembly
language and Java) can be seen in the Embedded Markets Study conducted by
EETimes in 2019 [7], shown in Fig. 1.21.

Figure 1.2: EETimes 2019 Embedded Markets Study [7]

To this day, the C language family continues to maintain its dominance in
the embedded systems industry. The second-most popular language, C++, very
often uses a highly specialised subset of the modern C++ standards. These
subsets ban several high-level features of C++ and constrain the language,
effectively making it behave more like C.

Notable in both surveys is the presence of modelling environments like
MATLAB and LabVIEW. These frameworks are broadly used for designing
entire systems that comprise multiple components. For instance, LabVIEW
uses a data flow-driven programming model to connect several components in

1Note that the EETimes survey, unlike the VDC survey, doesn’t allow multiple responses.

1.1. EMBEDDED SYSTEMS LANGUAGE SURVEY 5

a system. However, the individual components are often configured to generate
C programs, which constitute the heart of the systems.

This omnipresence of C is primarily for the reason that a lot of the legacy
microcontroller vendors supported C compilers. This has reached a point
today such that any new microcontroller that gets introduced into the market
compulsorily supports a C compiler.

One of the key benefit of C is that it is a small and sufficiently low-level
language that can enable the programmer to write resource-conscious programs.
Restricted subsets of C, such as MISRA C [8], enable a programmer to write
deterministic programs with statically predictable object lifetimes.

However, this strength of C as a “low-level systems language” can become
a disadvantage in terms of high cost of software development. C is a memory-
unsafe language, and this has had high costs on systems for the last several
decades. According to the 2021 Common Weakness Enumeration (CWE)
rankings by MITRE [9], out-of-bound writes remains the top vulnerability in
software systems. For that specific CWE, we find the C, C++ and assembly
languages as the most applicable platforms.

Naturally, in other software domains, where resource sensitivity is not a
concern, there has been widescale migration to memory-safe languages like Java
and Python. Now, despite the strong foothold of C in the resource-sensitive
embedded systems space, we can compare between Fig 1.1 and Fig 1.2 to see
Python’s growing popularity, overtaking Assembly and Java.

Python’s dynamic semantics is, in general, highly unsuitable for embedded
systems. However, the popularity and syntactic familiarity of the language
has resulted in a Python implementation - Micropython [10], which is gain-
ing traction in the embedded systems space. Micropython implements the
Python language with some minor differences from the reference implemen-
tation CPython, such as a compact representation of integers, restrictions on
Python standard libraries, etc.

Although Python guarantees memory safety over C, it lacks in terms of
expressing concurrent programs. The Python Language Reference defines a
single-threaded language and the reference implementation CPython holds a
Global Interpreter Lock (GIL) that prevents true multithreading. The language
also lacks any fundamental support for real-time computations. Despite these
limitations, the Micropython runtime provides a more resource-sensitive imple-
mentation compared to CPython, which perhaps explains the steady adoption
of the language in the embedded space.

Having observed the industrial trends among embedded systems languages,
we shall now turn our focus on research-oriented languages in this space.

1.1.2 Research Languages

The pervasiveness of embedded systems and the age of the research field has
resulted in diverse strands of research on languages, frameworks and tooling
infrastructure for embedded systems. Instead of an exhaustive literature survey,
we shall selectively look at some of the past influential lines of work and an
emerging programming model that could potentially impact the field.

6 CHAPTER 1. INTRODUCTION

Synchronous Languages

One of the most successful lines of research on embedded systems language
is the synchronous language family. The most influential languages from this
family are the three French languages - Esterel [11], Lustre [12], and Signal [13].
They are all based on a fundamental synchrony hypothesis that states -

All reactions are assumed to be instantaneous - and therefore atomic
in any possible sense.

The above essentially imposes a logical notion of time where all operations
such as instruction-sequencing, inter-process communication, data handling,
etc., happen instantaneously, taking no time. In practical implementations, the
synchronous hypothesis is approximated to the assumption - a program can
react to an external event before any further event occurs. The occurrence of
an external event amounts to a clock tick in the logical clock.

The synchrony hypothesis is quite useful in the context of real-time systems
to eliminate any jitter from the reaction time of a program. To realise the
hypothesis in practice, there has been a long history of research on various
compilation techniques for Esterel [14], which has influenced the other syn-
chronous language implementations as well. These techniques have enabled
synchronous languages to produce programs that occupy bounded memory.

The synchronous languages, however, do not aim to target all classes of
reactive embedded systems. As discussed by de Simone et al. [15], “the focus of
synchronous languages is to allow modeling and programming of systems where
cycle (comptation step) precision is needed”. Cycle precision of embedded
systems can be found in areas such as hardware (clock cycles) and avionics.
However, several classes of applications, like IoT, do not have a regular, periodic
clock that drives external events. The logical clock ticks for several such systems
are sparsely spread. There has been recent work on the sparse synchronous
model [16] to address such systems in the synchronous framework.

Additionally, synchronous languages often do not support general syntactic
constructs of a language. For instance, Esterel divides a reactive program
into three parts - (i) the I/O-interfacing layer, (ii) the reactive kernel and (iii)
data-handling layer [11]. Out of the three layers, Esterel is used to describe
only the reactive kernel. The data handling, involving classical computations, is
handled by some form of a host language, where Esterel is embedded. Similarly,
the I/O-interfacing, such as interrupt-handling, reading/writing of data, etc.,
which constitutes a large part of a reactive program, has to be designed entirely
in a host language, very likely C in the case of embedded systems.

Giotto

Closely related to the synchronous family of languages is the time-triggered
hard real-time language - Giotto [17]. Giotto draws inspiration from the
time-triggered architecture (TTA) [18] that found application in safety-critical
systems. In contrast with event-triggered (or event-driven) systems, time-
triggered systems like Giotto operate solely according to a pre-determined and
set task schedule.

Giotto operates under what it calls fixed logical execution time (FLET)
assumption, which states -

1.1. EMBEDDED SYSTEMS LANGUAGE SURVEY 7

The execution times associated with all computation and commu-
nication activities are fixed and determined by the model, not the
platform. In Giotto, the logical execution time of a task is always
exactly the period of the task, and the logical execution times of
all other activities are always zero.

The above differs from the synchrony hypothesis in the sense that it is a
formally weaker notion of value propagation (zero delay vs unit delay). The
implication of this difference affects the compilation process of the respective
languages; whereas, in the compilation of synchronous languages, the focus is on
fixed-point analysis; in the case of Giotto, the importance is on schedulability
analysis [19]. Accordingly, Giotto abstracts away its scheduling process to a
separate virtual machine called the Embedded Machine [20].

Giotto, as well as the synchronous languages, target the same category of
embedded applications - real-time control applications with a periodic heartbeat.
Likewise, both programming models are ill-suited for applications with a sparse
and aperiodic control pulse.

Timber

The Timber programming language [21] was an attempt to design a high-level
language targeting embedded devices. Timber wanted to bring the object-
oriented programming paradigm to the embedded systems space. One of the
advantages of an object-oriented language - a principled state management
discipline - would be an improvement over the low-level practices such as
state-transition tables, being used in C. Although there exist other real-time,
object-oriented languages like RTSJ [22], they heavily restrict any form of
dynamic object behaviour.

Timber features a rigorous type system and formal semantics to enable
the construction of deterministic programs. The semantics of Timber operates
under a central property -

Each reaction will terminate independent of further events, hence a
system described in Timber will be responsive at all times (under
the limitation of available CPU resources) and free of deadlocks.

The above property serves as the foundation for further system analyses
on Timber. The language, additionally, guarantees mutual exclusion over any
form of concurrent state-accesses within an application through its syntactic
constructs. Timber also provides a rich set of temporal primitives, such as
before, after, etc., for specifying the absolute time at which a particular reaction
should occur.

The major hurdle in realising the Timber project was designing a language
runtime that could fully support dynamic object-oriented behaviour in a
resource-constrained scenario. Inevitably, this challenge requires the design of
advanced garbage collection mechanisms that can support seamless pausing and
incremental collection techniques. There are brief allusions to an experimental
interruptible reference-counting collector in the Timber technical report [23], of
which we could not find any peer-reviewed publication. There has, however,
been a theoretical description of an incremental garbage collector [24] and

8 CHAPTER 1. INTRODUCTION

its scheduling for real-time systems [25] from the team behind Timber. The
development of the project, based on postings to the Timber mailing list, seems
to have terminated around 2009-10.

Embedded Domain-Specific Languages

A well-studied line of research is designing restricted languages for specific
domains, such as embedded systems, and then, instead of constructing a
full-fledged compiler and runtime, utilising the compiler infrastructure of a
general-purpose language. Such languages are termed embedded domain-
specific languages (EDSLs) [26] and have been used to program a variety of
embedded applications.

The Copilot EDSL [27] has been used to design hard real-time runtime
monitoring tools. It is a stream-based dataflow language that can generate
small constant-time and constant-space C programs, implementing embedded
monitors. Another example of an embedded-system EDSL is Ivory [28], which
enables writing memory-safe C programs.

The advantage of EDSLs is that they bring high-level abstraction from
the host language, such as Haskell, to the programming of fairly low-level
applications. Additionally, EDSLs have very little runtime overheads compared
to a high-level language that is natively run on embedded systems.

However, programming with an EDSL often involves learning two sets
of semantics - one of the host language and the other of the EDSL itself.
Frequently, the two sets of semantics oppose each other, and the resultant
program is challenging to maintain and understand. Hickey et al. [29] discuss
the lessons learned in programming an embedded systems application using an
EDSL and cite challenges such as illegible type-error messages and undefined
C-program generation.

Functional Reactive Programming

The programming model of Functional Reactive Programming (FRP) was
born to declaratively express graphical programs [30]. A fundamental differ-
ence of this programming model from the synchronous model is the notion
of continuous-time rather than discrete. The notion of continuous-time is
useful for declaratively expressing such things as mouse movement in graphical
applications.

FRP models continuous objects through an abstraction it calls Behaviour.
It also provides an abstraction called Event to model discrete operations such as
mouse-clicks. Along with behaviours and events FRP provides a series of higher-
order functions and combinators to describe reactive graphical applications.

Although initially limited to graphics, the programming model was found
suitable for describing modern web applications via popular Javascript libraries
like React [31]. Theoretically, the reactive nature of the model seems to be a
good fit for embedded systems.

However, one of the most challenging aspects of FRP has been realising
the model of continuous-time in practical implementations. Most original
implementations of FRP suffered from severe memory leaks. There has been
work [32] to fix these leaks but often at the cost of expressivity of the model.

1.2. THE GAP 9

Another challenge of FRP is that it is often embedded2 within a general-
purpose language like Haskell, which is not exclusively designed for highly
reactive applications. As a result, there is a lot of unnecessary plumbing
required to make the internal FRP model interact with the external environment
through the I/O monad [33].

In general, there is a lot of proliferation in the variety of APIs and implemen-
tations available for FRP. There are studies [34] to analyse the strengths and
weaknesses of the different design choices. There has also been experiments on
distributing an FRP runtime across multiple devices [35]. From the perspective
of embedded systems, there has been past research on highly-restricted FRP
implementations targeting resource-constrained PIC microcontrollers [36].

Overall, the FRP programming model has potential application for embed-
ded systems, but there is still no consensus on the ideal API or its implemen-
tation. There needs to be more research on designing resource-sensitive FRP
runtimes as well as on bringing time-critical computations to FRP.

1.2 The Gap

Our survey, in the last section, has shown the industry trends as well as research
activities related to embedded systems languages. At this point, we would
like to remind the reader about the critical properties that are essential for
designing an embedded-systems language in the tables below -

Reactivity

1. I/O-bound
2. Concurrent
3. Timing-aware

Resource-sensitivity

1. Low power
2. Low memory
3. Low clock-cycles

While the C programming language’s closeness to the hardware allows a C
programmer to write resource-sensitive programs, it is plagued with security
vulnerabilities discussed earlier. Additionally, C is not a concurrent language.
There are some ad-hoc libraries such as Protothreads [37] to mimic concurrent
behaviour, but the intrinsic language semantics is not concurrent. There is
a gap for a high-level language that embodies the reactive properties shown
above while running programs in a resource-sensitive manner.

The research languages that we have discussed all attempt to address this
gap. However, they fall short in certain areas. For instance, the synchronous
languages and Giotto are well designed for timing-critical applications but
exclusively target periodic applications with a regular heartbeat. Additionally,
the I/O-handling, which constitutes a major part of typical embedded systems
applications, is excluded from the programming models.

Finally, most other high-level programming abstractions, such as objects in
Timber or Functional Reactive Programming, lack resource-sensitive implemen-
tations. Given this state of the ecosystem, we attempt to address the following
research question -

2refers to the embedding of a language, not to be confused with embedded systems

10 CHAPTER 1. INTRODUCTION

Research Question - What are the fundamental high-level abstractions that
address the reactive nature of embedded systems, and how should these abstrac-
tions be implemented in a resource-sensitive manner?

1.3 Contributions

The hope, through our contributions, is to present high-level abstractions that
could have resource-sensitive implementations. Our contributions are broadly
divided into two parts. The first part comprises a paper that describes an
experimental reactive programming language. The second part contains two
papers describing the design of a high-level API and its runtime implementation
for embedded systems. We briefly summarise them in the following section -

Part I

1.3.1 Paper A : Hailstorm

The first paper presents Hailstorm [38], a statically-typed, purely-functional,
reactive domain-specific language. It uses the Arrowized FRP [39] formulation
of FRP to program embedded devices. The most central type in the language
is that of a signal function, SF a b, where a and b denote polymorphic type
variables. Signal functions are representations of a dataflow from type a to b.

We further extended this representation with the concept of a resource
type [40]. A resource type is type-level label that can be used to uniquely
identify various external resources. The new type of a signal function becomes
SF r a b, where r denote a polymorphic resource label. For instance, two
sensors that can supply an Int and Float value type respectively, will have the
following types in Hailstorm -

resource S1

resource S2

sensor1 :: SF S1 () Int

sensor2 :: SF S2 () Float

The unit type - () - above indicates that the sensor interacts with the
external world. Hailstorm, additionally, provides a family of combinators to
declaratively compose the data flowing through the various signal functions -

mapSignal# : (a -> b) -> SF Empty a b

(>>>) : SF r1 a b -> SF r2 b c -> SF (r1 ∪ r2) a c

(&&&) : SF r1 a b -> SF r2 a c -> SF (r1 ∪ r2) a (b, c)

(***) : SF r1 a b -> SF r2 c d -> SF (r1 ∪ r2) (a, c) (b, d)

The technical details about the type-level union and its semantics are
described in-depth in the paper. As discussed earlier, FRP models are often
embedded within a host language, which make any form of interaction with
the external world quite syntactically awkward. The introduction of resource
types is done to resolve this issue, and we detail, using examples, in the paper
on how a resource label can allow the correct composition of signal functions.

1.3. CONTRIBUTIONS 11

The Hailstorm language has an LLVM and Erlang backend. The Erlang
backend, in particular, was used to prototype experiments on the GRiSP mi-
crocontroller boards. Our evaluations consisted of writing very small prototype
applications in Hailstorm like a watchdog process, a simplified traffic light sys-
tem and a railway level-crossing simulator. One of the complications associated
with resource types is the linear increase in the number of type labels as the
number of resources (i.e. external inputs) increases, which often overshadow
the type-signatures within the programs.

We also carried out micro-benchmarks on the memory consumption and
response time of the programs. The memory footprint of the Hailstorm pro-
grams was in the order of 2-3 MB, owing to the size of the Erlang runtime.
The response time of the programs was in the range of 100-150 microseconds.

Hailstorm was primarily an experiment to address the I/O-bound nature of
embedded applications. Concurrency in FRP is implicit, and as for timing, the
language lacked any form of real-time APIs. Additionally, the code generated
from Hailstorm is polling-based, which is typically energy-inefficient compared
to event-based programs.

To remedy the above shortcomings, we realised that Hailstorm or any
reactive programming model, in general, are too high-level. There is a missing
layer of abstraction in between, as shown in Fig. 1.3, something akin to a
language runtime.

Figure 1.3: A missing layer of abstraction

The expectation of this layer is to be more low-level such that it can handle
the complexities of callback-based driver interfaces. It should naturally feature
explicit concurrency to capture the concurrent nature of the hardware while
including some notion of timing. Additionally, it should provide a resource-
sensitive runtime for supporting various programming models. The next part
discusses our attempt at such a project.

Part II

Our discussions till now have concentrated on programming languages for
embedded systems. Now, as we descend into a lower layer of abstraction,
we shall briefly survey some low-level frameworks, such as virtual machines,
targeting embedded devices.

12 CHAPTER 1. INTRODUCTION

Low-level tools for Embedded Systems

Virtual Machines

There have been attempts at porting popular general-purpose languages to
run on microcontrollers using virtual machines. Some examples are OMicroB
[41] supporting OCaml, Picobit [42] supporting Scheme and AtomVM [43]
supporting Erlang. In the real-time space, a safety-critical VM that can provide
hard real-time guarantees on Real-Time Java programs is the FijiVM [44]
implementation. The FijiVM project invented the Schism garbage collector
[45], a concurrent garbage collector that can handle real-time applications on
multicore embedded devices.

WebAssembly Micro Runtime

The WebAssembly project (WASM) has spawned sub-projects like WebAssem-
bly Micro Runtime (WAMR) [46] that allows running WASM-supported lan-
guages on microcontrollers. Language like JavaScript and Rust currently have
work-in-progress and experimental backends supporting WebAssembly. Reliable
benchmarks on how those languages and their runtimes perform on microcon-
trollers are still not available, and research on optimizing them specifically for
microcontrollers is still at a nascent stage.

Operating Systems

The last layer of abstraction that lies before the hardware is the operating sys-
tem. Typically in the context of embedded systems, these are often specialised
with real-time APIs and are called real-time operating systems (RTOS). Exam-
ples of popular RTOSes are Zephyr OS [47], ChibiOS [48] and FreeRTOS [49].

Generally, RTOSes are much lighter than desktop operating systems. They
typically come equipped with a scheduler, kernel services and something called a
hardware abstraction layer (HAL). A HAL serves as an abstraction for accessing
various microcontroller peripherals like GPIO, ADC, SPI and so on and also
take care of clock-related and board-level initialization.

Apart from the core services discussed above, RTOSes vary in terms of
higher levels of abstractions offered. FreeRTOS is more bare-bones compared
to something like Zephyr OS, which provides network drivers, implementations
of high-level networking protocols, etc. The programming language supported
by all of the above RTOSes is exclusively C.

1.3.2 Papers B & C: Synchron

Our current project, Synchron, attempts to fill the missing abstraction of
Fig. 1.3 such that high-level programming models, like FRP, can be hosted
more naturally on embedded devices. Synchron is a specialised runtime API
designed for expressing (i) I/O-bound, (ii) concurrent and (iii) timing-aware
programs. The architecture of Synchron consists of three parts -

• Runtime - The principal component of Synchron is a specialised runtime
consisting of nine built-in operations and a scheduler. The runtime
allows the creation of concurrent user-level processes (green threads)

1.3. CONTRIBUTIONS 13

and provides operators for declaratively expressing interactions between
the software processes and hardware interrupts. The power-efficient
scheduling of the processes is managed by the Synchron scheduler.

• Low-level Bridge - The Synchron runtime interacts with the various
hardware drivers through a low-level bridge interface. The interface is
general enough such that it can be implemented by both synchronous
drivers (like LED) as well as asynchronous drivers (like UART).

• Underlying OS - The Synchron runtime is run atop an underlying RTOS
such as ZephyrOS or ChibiOS. The OS supplies the actual hardware
drivers that implements the low-level bridge interface described above.
We have designed our runtime interfaces in a modular fashion such that
other operating systems, such as FreeRTOS, can be easily plugged in.

Our implementation of Synchron is in the form of a bytecode-interpreted
virtual machine called the SynchronVM. The execution engine of SynchronVM
is based on the Categorical Abstract Machine [50], which supports the cheap
creation of closures to support functional programming languages. Fig. 1.4
below provides a graphical description of the architecture of Synchron.

Figure 1.4: Architecture of Synchron

The Synchron API

The core API of Synchron comprises of nine functions. We show the type-
signatures of those functions in Fig. 1.5 below.

Figure 1.5: The Synchron API

14 CHAPTER 1. INTRODUCTION

The Synchron API is derived from Concurrent ML (CML) [51], which is
a synchronous message-passing–based concurrency model. The fundamental
difference of CML from standard synchronous message-passing models, such as
communicating sequential processes [52], is the separation between the intent
and act of communication. This separation is captured by first-class values
called Events.

An event is an abstraction to represent deferred communication. In contrast
with a rudimentary protocol involving single message sends and receives, the
CML combinators such as wrap and choose can compose elaborate communi-
cation protocols involving multiple sends and receives.

Our extension of the CML API involves the last two functions in Fig. 1.5 -
syncT and spawnExternal. The first extension, syncT, allows a programmer
to specify the exact timing window at which an event synchronisation should
happen. The first argument to syncT represents the baseline of the operation,
while the second argument is the deadline. The syncT operator provides an
opportunity to dynamically prioritise concurrent timed processes instead of
static-priority APIs provided by typical RTOSes.

The second extension, spawnExternal, models the external hardware
drivers as processes themselves. Modelling the drivers as processes allows
a programmer to apply the entire message-passing API to low-level drivers
interactions such as interrupt-handling. The serialisation and deserialisation
between software messages and hardware interrupts are handled by the runtime.

We describe our design and implementation of the SynchronVM in the form
of two papers [53,54]. Do note that in the first of the two papers, we call the
VM “SenseVM”. However, we later renamed the VM, keeping in mind the
synchronous nature of our API, to SynchronVM.

SynchronVM currently supports the nRF52840DK and the STM32F4 micro-
controller boards. We carried out our evaluations of the SynchronVM with the
help of a musical application, which involves some soft real-time components.
Other micro-benchmarks were carried out on response times, memory usage
and power consumption.

Our preliminary results are encouraging and show that in terms of power
usage, a program running on SynchronVM has the same amount of momentary
power consumption as a C program written using callback registration. Of
course, if the power usage is integrated over time, a C program would be
more power-efficient. However, the trade-off of programming with high-level
abstractions is an attractive proposition.

In terms of memory usage, a SynchronVM program occupies tens to hun-
dreds of kilobytes, which is beneficial for memory constrained microcontrollers.
The response times of our benchmarks are typically 2-3x times slower than
the C equivalents. A point to be noted here is that our execution engine is
based on the categorical abstract machine, which is known to be four times
slower, on average, than the Zinc abstract machine [55]. Additionally, we use a
basic stop-the-world, non-moving, mark-and-sweep garbage collector, which
contributes to the slowness of the response times.

Overall, SynchronVM provides a possible answer to the research question
that we posed earlier. We have identified a set of high-level abstractions for
writing concurrent, I/O-bound and timing-aware embedded system programs.
We further provide a resource-sensitive implementation of the proposed abstrac-

1.4. FUTURE WORK 15

tions and benchmark our implementation. Our initial results on memory and
power usage look promising, while response times could be further improved.

There are several open avenues for optimisations, such as moving to a faster
execution engine, switching to a register-based VM, performing ahead-of-time
compilation and using advanced generational garbage collectors. Aside from
the various optimisation opportunities, in the next section, we discuss the more
research-oriented challenges that we hope to address in the future.

1.4 Future Work

1.4.1 Region-based Memory Management

One of the most critical challenges in hosting a high-level programming language
on embedded systems is the aspect of dynamic memory management. Object-
oriented as well as functional programming paradigms feature plenty of dynamic
memory allocation. Typically managed runtimes employ garbage collectors
to deallocate the dynamically allocated memory. However, the points of time
where the memory will be deallocated by the garbage collector or the total time
required for deallocation is unpredictable. This unpredictability complicates
the scheduling of real-time applications (especially hard real-time) on embedded
systems [56].

A promising line of work to mitigate the non-determinism discussed above
is the region-based memory management (RBMM) discipline [57]. RBMM
arranges the memory into a stack of regions that gets deallocated in a last-in-
first-out fashion. The principal component of RBMM is a series of type-based
static analysis passes, called region inference [58], that conservatively determines
the scope of a piece of dynamic memory. Accordingly, it then allocates the
memory into the ideal position within the region stack identified by the analysis.

The advantage of RBMM is that memory deallocation happens in constant
time. Additionally, the structure of the program provides insights into the
scoping pattern that dictates the lifetime of the various memory allocations.
It has the potential to be used in embedded systems applications as a lot of
typical C programs involve identifying the same static arrangement of the
memory layout, which RBMM can infer automatically.

However, the authors and implementers of RBMM have identified weaknesses
of the approach that often lead to memory leaks in practical programs [59]. In
most cases, RBMM has to be used in conjunction with a garbage collector, which
reintroduces the same unpredictability that real-time applications preferably
avoid. Also, region-based memory leaks were found to be notoriously hard to
detect and then debug, which often involved redefining the program structure.

A recent study [60] has analysed the behaviour of region-based, forever-alive
server programs and found the weakness to be that the region-inference algo-
rithm conservatively places all of the memory into a global infinite region, which
continues growing till memory leaks. A possible research track would be identi-
fying the root cause behind this conservative estimation of the region-inference
algorithm and employing more optimistic region-allocation policies, which could
roll back the allocation by dynamically moving the data across regions. Also,
recent research on integrating generational garbage collection with RBMM [61]
is a prospective memory management strategy for SynchronVM.

16 CHAPTER 1. INTRODUCTION

1.4.2 Security of Embedded Systems

One of the most vital areas of research interest is the security of embedded sys-
tems. As discussed in the earlier sections, low-level, memory-unsafe languages
such as C and C++ introduce a vast array of memory-related vulnerabilities.
The introduction of high-level, managed programming languages aims to reduce
a large portion of such security weaknesses.

However, there exists a large class of hardware-based vulnerabilities [62]
as well as communication protocol threats [63], which cannot be prevented by
simply using high-level languages. Their mitigation requires advanced security
techniques such as specialised hardware support.

ARM microcontrollers (Cortex-M), which universally dominates the em-
bedded systems market, provides a special security mode called the ARM
TrustZone [64]. There has been a recent surge of interest from the security
community in TrustZone [65], which allows isolating critical security firmware,
assets and private information. Aside from isolation, TrustZone also provides
building blocks to implement end-to-end security solutions, namely, trusted
I/O paths, secure storage, and remote attestation.

Accessing the TrustZone features require interactions with very low-level C
and assembly APIs. An improvement here would be using the ARM TrustZone
API and constructing secure application compartments on SynchronVM. Con-
sequently, applications hosted on the SynchronVM, using any host language,
could isolate their security-sensitive logic from the rest of the application. There
has been a related project in this field for desktop applications running on the
.NET language runtime called the Trusted Language Runtime [66].

CHERI

An exciting new development has been the CHERI capability model [67], which
extends the RISC instruction set with capability-based memory protection
to mitigate common memory vulnerabilities. The very recent release of the
ARM Morello board [68], which integrates the CHERI capability model into
actual physical hardware, provides an excellent opportunity to experiment with
building higher-level platforms such as operating systems and virtual machines
that test the utility of the CHERI model.

A research avenue comparable with the ARM TrustZone–based secure
compartments would be using the CHERI capabilities for compartmentalisation
in the SynchronVM. There has been recent work to port the C/C++–based
Boehm-Demers-Weiser garbage collector to CHERI hardware [69], which could
serve as an experimental memory manager to support the SynchronVM (written
entirely in C99) on such devices.

Bibliography

[1] T. A. Henzinger and J. Sifakis, “The Embedded Systems Design
Challenge,” in FM 2006: Formal Methods, 14th International Symposium
on Formal Methods, Hamilton, Canada, August 21-27, 2006, Proceedings,
ser. Lecture Notes in Computer Science, J. Misra, T. Nipkow, and
E. Sekerinski, Eds., vol. 4085. Springer, 2006, pp. 1–15. [Online].
Available: https://doi.org/10.1007/11813040\ 1

[2] D. Harel and A. Pnueli, “On the Development of Reactive Systems,”
in Logics and Models of Concurrent Systems - Conference proceedings,
Colle-sur-Loup (near Nice), France, 8-19 October 1984, ser. NATO ASI
Series, K. R. Apt, Ed., vol. 13. Springer, 1984, pp. 477–498. [Online].
Available: https://doi.org/10.1007/978-3-642-82453-1\ 17

[3] S. Ravi, A. Raghunathan, P. C. Kocher, and S. Hattangady, “Security
in embedded systems: Design challenges,” ACM Trans. Embed.
Comput. Syst., vol. 3, no. 3, pp. 461–491, 2004. [Online]. Available:
https://doi.org/10.1145/1015047.1015049

[4] Z. Zhang, M. C. Y. Cho, C. Wang, C. Hsu, C. K. Chen, and
S. Shieh, “IoT Security: Ongoing Challenges and Research Opportunities,”
in 7th IEEE International Conference on Service-Oriented Computing
and Applications, SOCA 2014, Matsue, Japan, November 17-19,
2014. IEEE Computer Society, 2014, pp. 230–234. [Online]. Available:
https://doi.org/10.1109/SOCA.2014.58

[5] A. Sadeghi, C. Wachsmann, and M. Waidner, “Security and privacy
challenges in industrial internet of things,” in Proceedings of the 52nd
Annual Design Automation Conference, San Francisco, CA, USA,
June 7-11, 2015. ACM, 2015, pp. 54:1–54:6. [Online]. Available:
https://doi.org/10.1145/2744769.2747942

[6] VDC Research Survey. (2011) Embedded Engineer Survey Results.
[Online]. Available: https://tinyurl.com/2bfe8kbt

[7] EETimes. (2019) 2019 Embedded Markets Study. [Online].
Available: https://www.embedded.com/wp-content/uploads/2019/11/
EETimes Embedded 2019 Embedded Markets Study.pdf

[8] L. Hatton, “Safer Language Subsets: an overview and a case history,
MISRA C,” Inf. Softw. Technol., vol. 46, no. 7, pp. 465–472, 2004.
[Online]. Available: https://doi.org/10.1016/j.infsof.2003.09.016

17

18 BIBLIOGRAPHY

[9] MITRE Corp. (2021) 2021 CWE Top 25 Most Dangerous Software
Errors. [Online]. Available: https://cwe.mitre.org/top25/archive/2021/
2021 cwe top25.html

[10] Damien George. (2014) Micropython. [Online]. Available: https:
//micropython.org/

[11] G. Berry and G. Gonthier, “The Esterel Synchronous Programming
Language: Design, Semantics, Implementation,” Sci. Comput.
Program., vol. 19, no. 2, pp. 87–152, 1992. [Online]. Available:
https://doi.org/10.1016/0167-6423(92)90005-V

[12] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice, “Lustre: A Declarative
Language for Programming Synchronous Systems,” in Conference Record
of the Fourteenth Annual ACM Symposium on Principles of Programming
Languages, Munich, Germany, January 21-23, 1987. ACM Press, 1987,
pp. 178–188. [Online]. Available: https://doi.org/10.1145/41625.41641

[13] T. Gautier and P. Le Guernic, “SIGNAL: A declarative language
for synchronous programming of real-time systems,” in Functional
Programming Languages and Computer Architecture, Portland, Oregon,
USA, September 14-16, 1987, Proceedings, ser. Lecture Notes in Computer
Science, G. Kahn, Ed., vol. 274. Springer, 1987, pp. 257–277. [Online].
Available: https://doi.org/10.1007/3-540-18317-5\ 15

[14] D. Potop-Butucaru, S. A. Edwards, and G. Berry, Compiling
Esterel. Springer, 2007. [Online]. Available: https://doi.org/10.1007/
978-0-387-70628-3

[15] R. de Simone, J. Talpin, and D. Potop-Butucaru, “The Synchronous
Hypothesis and Synchronous Languages,” in Embedded Systems
Handbook, R. Zurawski, Ed. CRC Press, 2005. [Online]. Available:
https://doi.org/10.1201/9781420038163.ch8

[16] S. A. Edwards and J. Hui, “The Sparse Synchronous Model,” in Forum
for Specification and Design Languages, FDL 2020, Kiel, Germany,
September 15-17, 2020. IEEE, 2020, pp. 1–8. [Online]. Available:
https://doi.org/10.1109/FDL50818.2020.9232938

[17] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Giotto: A Time-
Triggered Language for Embedded Programming,” in Embedded Software,
First International Workshop, EMSOFT 2001, Tahoe City, CA, USA,
October, 8-10, 2001, Proceedings, ser. Lecture Notes in Computer Science,
T. A. Henzinger and C. M. Kirsch, Eds., vol. 2211. Springer, 2001, pp.
166–184. [Online]. Available: https://doi.org/10.1007/3-540-45449-7\ 12

[18] H. Kopetz, Real-Time Systems - Design Principles for Distributed Embed-
ded Applications, ser. The Kluwer international series in engineering and
computer science. Kluwer, 1997, vol. 395.

[19] C. M. Kirsch, “Principles of Real-Time Programming,” in Embedded
Software, Second International Conference, EMSOFT 2002, Grenoble,
France, October 7-9, 2002, Proceedings, ser. Lecture Notes in

BIBLIOGRAPHY 19

Computer Science, A. L. Sangiovanni-Vincentelli and J. Sifakis,
Eds., vol. 2491. Springer, 2002, pp. 61–75. [Online]. Available:
https://doi.org/10.1007/3-540-45828-X\ 6

[20] T. A. Henzinger and C. M. Kirsch, “The Embedded Machine:
Predictable, Portable Real-Time Code,” in Proceedings of the 2002
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), Berlin, Germany, June 17-19, 2002, J. Knoop
and L. J. Hendren, Eds. ACM, 2002, pp. 315–326. [Online]. Available:
https://doi.org/10.1145/512529.512567

[21] M. Carlsson, J. Nordlander, and D. Kieburtz, “The Semantic Layers
of Timber,” in Programming Languages and Systems, First Asian
Symposium, APLAS 2003, Beijing, China, November 27-29, 2003,
Proceedings, ser. Lecture Notes in Computer Science, A. Ohori,
Ed., vol. 2895. Springer, 2003, pp. 339–356. [Online]. Available:
https://doi.org/10.1007/978-3-540-40018-9\ 22

[22] JCP. (2001) The Real-Time Specification for Java. [Online]. Available:
https://www.rtsj.org/

[23] P. Lindgren, J. Nordlander, L. Svensson, and J. Eriksson, Time for timber.
Lule̊a Tekniska Universitet, 2005.

[24] M. Kero, J. Nordlander, and P. Lindgren, “A Correct and Useful
Incremental Copying Garbage Collector,” in Proceedings of the 6th
International Symposium on Memory Management, ISMM 2007,
Montreal, Quebec, Canada, October 21-22, 2007, G. Morrisett and
M. Sagiv, Eds. ACM, 2007, pp. 129–140. [Online]. Available:
https://doi.org/10.1145/1296907.1296924

[25] M. Kero and S. Aittamaa, “Scheduling Garbage Collection in Real-Time
Systems,” in Proceedings of the 8th International Conference on
Hardware/Software Codesign and System Synthesis, CODES+ISSS 2010,
part of ESWeek ’10 Sixth Embedded Systems Week, Scottsdale, AZ, USA,
October 24-28, 2010, T. Givargis and A. Donlin, Eds. ACM, 2010, pp.
51–60. [Online]. Available: https://doi.org/10.1145/1878961.1878971

[26] P. Hudak, “Building Domain-Specific Embedded Languages,” ACM
Comput. Surv., vol. 28, no. 4es, p. 196, 1996. [Online]. Available:
https://doi.org/10.1145/242224.242477

[27] L. Pike, A. Goodloe, R. Morisset, and S. Niller, “Copilot: A Hard Real-
Time Runtime Monitor,” in Runtime Verification - First International
Conference, RV 2010, St. Julians, Malta, November 1-4, 2010. Proceedings,
ser. Lecture Notes in Computer Science, H. Barringer, Y. Falcone,
B. Finkbeiner, K. Havelund, I. Lee, G. J. Pace, G. Rosu, O. Sokolsky,
and N. Tillmann, Eds., vol. 6418. Springer, 2010, pp. 345–359. [Online].
Available: https://doi.org/10.1007/978-3-642-16612-9\ 26

[28] T. Elliott, L. Pike, S. Winwood, P. C. Hickey, J. Bielman, J. Sharp, E. L.
Seidel, and J. Launchbury, “Guilt Free Ivory,” in Proceedings of the

20 BIBLIOGRAPHY

8th ACM SIGPLAN Symposium on Haskell, Haskell 2015, Vancouver,
BC, Canada, September 3-4, 2015, B. Lippmeier, Ed. ACM, 2015, pp.
189–200. [Online]. Available: https://doi.org/10.1145/2804302.2804318

[29] P. C. Hickey, L. Pike, T. Elliott, J. Bielman, and J. Launchbury,
“Building Embedded Systems with Embedded DSLs,” in Proceedings
of the 19th ACM SIGPLAN international conference on Functional
programming, Gothenburg, Sweden, September 1-3, 2014, J. Jeuring and
M. M. T. Chakravarty, Eds. ACM, 2014, pp. 3–9. [Online]. Available:
https://doi.org/10.1145/2628136.2628146

[30] C. Elliott and P. Hudak, “Functional Reactive Animation,” in Proceedings
of the 1997 ACM SIGPLAN International Conference on Functional
Programming (ICFP ’97), Amsterdam, The Netherlands, June 9-11, 1997,
S. L. P. Jones, M. Tofte, and A. M. Berman, Eds. ACM, 1997, pp.
263–273. [Online]. Available: https://doi.org/10.1145/258948.258973

[31] Jordan Walke. (2013) React.js. [Online]. Available: https://reactjs.org/

[32] H. Liu and P. Hudak, “Plugging a Space Leak with an Arrow,” Electron.
Notes Theor. Comput. Sci., vol. 193, pp. 29–45, 2007. [Online]. Available:
https://doi.org/10.1016/j.entcs.2007.10.006

[33] A. van der Ploeg and K. Claessen, “Practical Principled FRP: Forget
the Past, Change the Future, FRPNow!” in Proceedings of the 20th
ACM SIGPLAN International Conference on Functional Programming,
ICFP 2015, Vancouver, BC, Canada, September 1-3, 2015, K. Fisher
and J. H. Reppy, Eds. ACM, 2015, pp. 302–314. [Online]. Available:
https://doi.org/10.1145/2784731.2784752

[34] E. Bainomugisha, A. L. Carreton, T. V. Cutsem, S. Mostinckx,
and W. D. Meuter, “A Survey on Reactive Programming,” ACM
Comput. Surv., vol. 45, no. 4, pp. 52:1–52:34, 2013. [Online]. Available:
https://doi.org/10.1145/2501654.2501666

[35] K. Shibanai and T. Watanabe, “Distributed Functional Reactive
Programming on Actor-Based Runtime,” in Proceedings of the 8th
ACM SIGPLAN International Workshop on Programming Based on
Actors, Agents, and Decentralized Control, AGERE!@SPLASH 2018,
Boston, MA, USA, November 5, 2018, J. D. Koster, F. Bergenti,
and J. Franco, Eds. ACM, 2018, pp. 13–22. [Online]. Available:
https://doi.org/10.1145/3281366.3281370

[36] Z. Wan, W. Taha, and P. Hudak, “Event-Driven FRP,” in Practical
Aspects of Declarative Languages, 4th International Symposium, PADL
2002, Portland, OR, USA, January 19-20, 2002, Proceedings, ser. Lecture
Notes in Computer Science, S. Krishnamurthi and C. R. Ramakrishnan,
Eds., vol. 2257. Springer, 2002, pp. 155–172. [Online]. Available:
https://doi.org/10.1007/3-540-45587-6\ 11

[37] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali, “Protothreads: Simplifying
Event-Driven Programming of Memory-Constrained Embedded Systems,”

BIBLIOGRAPHY 21

in Proceedings of the 4th International Conference on Embedded
Networked Sensor Systems, SenSys 2006, Boulder, Colorado, USA,
October 31 - November 3, 2006, A. T. Campbell, P. Bonnet, and
J. S. Heidemann, Eds. ACM, 2006, pp. 29–42. [Online]. Available:
https://doi.org/10.1145/1182807.1182811

[38] A. Sarkar and M. Sheeran, “Hailstorm: A Statically-Typed, Purely
Functional Language for IoT Applications,” in PPDP ’20: 22nd
International Symposium on Principles and Practice of Declarative
Programming, Bologna, Italy, 9-10 September, 2020. ACM, 2020, pp.
12:1–12:16. [Online]. Available: https://doi.org/10.1145/3414080.3414092

[39] H. Nilsson, A. Courtney, and J. Peterson, “Functional Reactive Program-
ming, Continued,” in Proceedings of the 2002 ACM SIGPLAN workshop
on Haskell, 2002, pp. 51–64.

[40] D. Winograd-Cort, H. Liu, and P. Hudak, “Virtualizing Real-World
Objects in FRP,” in Practical Aspects of Declarative Languages - 14th
International Symposium, PADL 2012, Philadelphia, PA, USA, January
23-24, 2012. Proceedings, ser. Lecture Notes in Computer Science, C. V.
Russo and N. Zhou, Eds., vol. 7149. Springer, 2012, pp. 227–241.
[Online]. Available: https://doi.org/10.1007/978-3-642-27694-1\ 17

[41] S. Varoumas, B. Vaugon, and E. Chailloux, “A Generic Virtual Machine
Approach for Programming Microcontrollers: the OMicroB Project,” in
9th European Congress on Embedded Real Time Software and Systems
(ERTS 2018), 2018.

[42] V. St-Amour and M. Feeley, “PICOBIT: A Compact Scheme System
for Microcontrollers,” in Implementation and Application of Functional
Languages - 21st International Symposium, IFL 2009, South Orange,
NJ, USA, September 23-25, 2009, Revised Selected Papers, ser.
Lecture Notes in Computer Science, M. T. Morazán and S. Scholz,
Eds., vol. 6041. Springer, 2009, pp. 1–17. [Online]. Available:
https://doi.org/10.1007/978-3-642-16478-1\ 1

[43] Davide Bettio. (2017) AtomVM. [Online]. Available: https://github.com/
bettio/AtomVM

[44] F. Pizlo, L. Ziarek, and J. Vitek, “Real time Java on resource-constrained
platforms with Fiji VM,” in Proceedings of the 7th International
Workshop on Java Technologies for Real-Time and Embedded Systems,
JTRES 2009, Madrid, Spain, September 23-25, 2009, ser. ACM
International Conference Proceeding Series, M. T. Higuera-Toledano
and M. Schoeberl, Eds. ACM, 2009, pp. 110–119. [Online]. Available:
https://doi.org/10.1145/1620405.1620421

[45] F. Pizlo, L. Ziarek, P. Maj, A. L. Hosking, E. Blanton, and J. Vitek,
“Schism: Fragmentation-Tolerant Real-Time Garbage Collection,” in
Proceedings of the 2010 ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2010, Toronto, Ontario,
Canada, June 5-10, 2010, B. G. Zorn and A. Aiken, Eds. ACM, 2010, pp.
146–159. [Online]. Available: https://doi.org/10.1145/1806596.1806615

22 BIBLIOGRAPHY

[46] (2019) WAMR - WebAssembly Micro Runtime. [Online]. Available:
https://github.com/bytecodealliance/wasm-micro-runtime

[47] The Linux Foundation, “Zephyr RTOS,” https://www.zephyrproject.org/,
accessed 2021-11-28.

[48] Giovanni Di Sirio, “ChibiOS,” https://www.chibios.org/dokuwiki/doku.
php, accessed 2021-11-28.

[49] Richard Barry, “FreeRTOS,” https://www.freertos.org/, accessed 2021-
11-28.

[50] G. Cousineau, P. Curien, and M. Mauny, “The Categorical Abstract
Machine,” in Functional Programming Languages and Computer
Architecture, FPCA 1985, Nancy, France, September 16-19, 1985,
Proceedings, ser. Lecture Notes in Computer Science, J. Jouannaud,
Ed., vol. 201. Springer, 1985, pp. 50–64. [Online]. Available:
https://doi.org/10.1007/3-540-15975-4\ 29

[51] J. H. Reppy, “Concurrent ML: Design, Application and Semantics,”
in Functional Programming, Concurrency, Simulation and Automated
Reasoning: International Lecture Series 1991-1992, McMaster University,
Hamilton, Ontario, Canada, ser. Lecture Notes in Computer Science, P. E.
Lauer, Ed., vol. 693. Springer, 1993, pp. 165–198. [Online]. Available:
https://doi.org/10.1007/3-540-56883-2\ 10

[52] C. A. R. Hoare, “Communicating Sequential Processes,” Commun.
ACM, vol. 21, no. 8, pp. 666–677, 1978. [Online]. Available:
https://doi.org/10.1145/359576.359585

[53] A. Sarkar, R. Krook, B. J. Svensson, and M. Sheeran, “Higher-Order
Concurrency for Microcontrollers,” in MPLR ’21: 18th ACM SIGPLAN
International Conference on Managed Programming Languages and
Runtimes, Münster, Germany, September 29-30, 2021, H. Kuchen
and J. Singer, Eds. ACM, 2021, pp. 26–35. [Online]. Available:
https://doi.org/10.1145/3475738.3480716

[54] A. Sarkar, B. J. Svensson, and M. Sheeran, “Synchon - An API and
Runtime for Embedded Systems,” 2022, Under Review.

[55] X. Leroy, “The ZINC experiment: an economical implementation of the
ML language,” Ph.D. dissertation, INRIA, 1990.

[56] K. Hammond, “Is it time for Real-Time Functional Programming?” in Re-
vised Selected Papers from the Fourth Symposium on Trends in Functional
Programming, TFP 2003, Edinburgh, United Kingdom, 11-12 September
2003, ser. Trends in Functional Programming, S. Gilmore, Ed., vol. 4.
Intellect, 2003, pp. 1–18.

[57] M. Tofte and J. Talpin, “Region-based Memory Management,” Inf.
Comput., vol. 132, no. 2, pp. 109–176, 1997. [Online]. Available:
https://doi.org/10.1006/inco.1996.2613

BIBLIOGRAPHY 23

[58] M. Tofte and L. Birkedal, “A Region Inference Algorithm,” ACM Trans.
Program. Lang. Syst., vol. 20, no. 4, pp. 724–767, 1998. [Online]. Available:
https://doi.org/10.1145/291891.291894

[59] M. Tofte, L. Birkedal, M. Elsman, and N. Hallenberg, “A
Retrospective on Region-Based Memory Management,” High. Order
Symb. Comput., vol. 17, no. 3, pp. 245–265, 2004. [Online]. Available:
https://doi.org/10.1023/B:LISP.0000029446.78563.a4

[60] R. Krook, “Region-based Memory Management and Actor Model Concur-
rency An initial study of how the combination performs,” 2020.

[61] M. Elsman and N. Hallenberg, “Integrating region memory management
and tag-free generational garbage collection,” J. Funct. Program.,
vol. 31, p. e4, 2021. [Online]. Available: https://doi.org/10.1017/
S0956796821000010

[62] J. Obermaier and S. Tatschner, “Shedding too much Light on a
Microcontroller’s Firmware Protection,” in 11th USENIX Workshop on
Offensive Technologies, WOOT 2017, Vancouver, BC, Canada, August
14-15, 2017, W. Enck and C. Mulliner, Eds. USENIX Association,
2017. [Online]. Available: https://www.usenix.org/conference/woot17/
workshop-program/presentation/obermaier

[63] Z. Durumeric, J. Kasten, D. Adrian, J. A. Halderman, M. Bailey, F. Li,
N. Weaver, J. Amann, J. Beekman, M. Payer, and V. Paxson, “The
Matter of Heartbleed,” in Proceedings of the 2014 Internet Measurement
Conference, IMC 2014, Vancouver, BC, Canada, November 5-7, 2014,
C. Williamson, A. Akella, and N. Taft, Eds. ACM, 2014, pp. 475–488.
[Online]. Available: https://doi.org/10.1145/2663716.2663755

[64] ARM. (2014) ARM TrustZone-M. [Online]. Available: https://www.arm.
com/technologies/trustzone-for-cortex-m

[65] S. Pinto and N. Santos, “Demystifying Arm TrustZone: A Comprehensive
Survey,” ACM Comput. Surv., vol. 51, no. 6, pp. 130:1–130:36, 2019.
[Online]. Available: https://doi.org/10.1145/3291047

[66] N. Santos, H. Raj, S. Saroiu, and A. Wolman, “Using ARM Trustzone
to Build a Trusted Language Runtime for Mobile Applications,”
in Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2014, Salt Lake City, UT, USA, March 1-5, 2014,
R. Balasubramonian, A. Davis, and S. V. Adve, Eds. ACM, 2014, pp.
67–80. [Online]. Available: https://doi.org/10.1145/2541940.2541949

[67] J. Woodruff, R. N. M. Watson, D. Chisnall, S. W. Moore, J. Anderson,
B. Davis, B. Laurie, P. G. Neumann, R. M. Norton, and M. Roe,
“The CHERI capability model: Revisiting RISC in an age of
risk,” in ACM/IEEE 41st International Symposium on Computer
Architecture, ISCA 2014, Minneapolis, MN, USA, June 14-18, 2014.
IEEE Computer Society, 2014, pp. 457–468. [Online]. Available:
https://doi.org/10.1109/ISCA.2014.6853201

24 BIBLIOGRAPHY

[68] ARM. (2022) ARM Morello boards announcement. [Online]. Available:
https://tinyurl.com/5n87tcf2

[69] D. Jacob and J. Singer, “Capability Boehm: challenges and opportunities
for garbage collection with capability hardware,” in Proceedings of the 18th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments, 2022, pp. 81–87.

PART 1

25

Chapter 2

The Hailstorm IoT
Language

26

Hailstorm : A Statically-Typed, Purely Functional Language for
IoT Applications

Abhiroop Sarkar
sarkara@chalmers.se
Chalmers University
Gothenburg, Sweden

Mary Sheeran
mary.sheeran@chalmers.se

Chalmers University
Gothenburg, Sweden

ABSTRACT
With the growing ubiquity of Internet of Things (IoT), more complex
logic is being programmed on resource-constrained IoT devices,
almost exclusively using the C programming language. While C
provides low-level control over memory, it lacks a number of high-
level programming abstractions such as higher-order functions,
polymorphism, strong static typing, memory safety, and automatic
memory management.
We present Hailstorm, a statically-typed, purely functional pro-

gramming language that attempts to address the above problem.
It is a high-level programming language with a strict typing disci-
pline. It supports features like higher-order functions, tail-recursion,
and automatic memory management, to program IoT devices in
a declarative manner. Applications running on these devices tend
to be heavily dominated by I/O. Hailstorm tracks side effects like
I/O in its type system using resource types. This choice allowed us
to explore the design of a purely functional standalone language,
in an area where it is more common to embed a functional core
in an imperative shell. The language borrows the combinators of
arrowized FRP, but has discrete-time semantics. The design of the
full set of combinators is work in progress, driven by examples.
So far, we have evaluated Hailstorm by writing standard examples
from the literature (earthquake detection, a railway crossing system
and various other clocked systems), and also running examples on
the GRiSP embedded systems board, through generation of Erlang.

CCS CONCEPTS
• Software and its engineering → Compilers; Domain spe-
cific languages; •Computer systems organization→ Sensors
and actuators; Embedded software.

KEYWORDS
functional programming, IoT, compilers, embedded systems

ACM Reference Format:
Abhiroop Sarkar and Mary Sheeran. 2020. Hailstorm : A Statically-Typed,
Purely Functional Language for IoT Applications. In 22nd International
Symposium on Principles and Practice of Declarative Programming (PPDP ’20),

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PPDP ’20, September 8–10, 2020, Bologna, Italy
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8821-4/20/09. . . $15.00
https://doi.org/10.1145/3414080.3414092

September 8–10, 2020, Bologna, Italy. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3414080.3414092

1 INTRODUCTION
As the density of IoT devices and diversity in IoT applications con-
tinue to increase, both industry and academia are moving towards
decentralized system architectures like edge computing [38]. In edge
computation, devices such as sensors and client applications are
provided greater computational power, rather than pushing the
data to a backend cloud service for computation. This results in
improved response time and saves network bandwidth and energy
consumption [50]. In a growing number of applications such as
aeronautics and automated vehicles, the real-time computation is
more robust and responsive if the edge devices are compute capable.
In a more traditional centralized architecture, the sensors and

actuators have little logic in them; they rather act as data relaying
services. In such cases, the firmware on the devices is relatively sim-
ple and programmed almost exclusively using the C programming
language. However with the growing popularity of edge computa-
tion, more complex logic is moving to the edge IoT devices. In such
circumstances, programs written using C tend to be verbose, error-
prone and unsafe [17, 27]. Additionally, IoT applications written
in low-level languages are highly prone to security vulnerabilities
[7, 58].
Hailstorm is a domain-specific language that attempts to ad-

dress these issues by bringing ideas and abstractions from the
functional and reactive programming communities to program-
ming IoT applications. Hailstorm is a pure, statically-typed func-
tional programming language. Unlike impure functional languages
like ML and Scheme, Hailstorm restricts arbitrary side-effects and
makes dataflow explicit. The purity and static typing features of the
language, aside from providing a preliminary static-analysis tool,
provide an essential foundation for embedding advanced language-
based security techniques [54] in the future.
The programming model of Hailstorm draws inspiration from

the extensive work on Functional Reactive Programming (FRP)
[18]. FRP provides an interface to write reactive programs such
as graphic animations using (1) continuous time-varying values
called Behaviours and (2) discrete values called Events. The original
formulation of FRP suffered from a number of shortcomings such
as space-leaks [41] and a restrictive form of stream based I/O.
A later FRP formulation, arrowized FRP [46], fixed space leaks,

and in more recent work Winograd-Cort et al. introduced a notion
of resource types [66] to overcome the shortcomings of the stream
based I/O model. The work on resource types is a library in Haskell,
and is not suitable to run directly on resource-constrained hard-
ware. Hailstorm uses resource types to uniquely identify each I/O

1

27

resource. It treats each resource as a signal function to track its
lifetime, and prevents resource duplication through the type system.
Hailstorm currently has a simple discrete time semantics, though
we hope to explore extensions later.

A Hailstorm program is compiled to a dataflow graph, which is
executed synchronously. The core of the language is a pure call-
by-value implementation of the lambda calculus. The synchronous
language of arrowized-FRP provides a minimal set of combinators
to which the pure core constructs of Hailstorm can be raised. This
language of arrows then enforces a purely functional way to interact
with I/O, using resource types.

Hailstorm, in its current version, is a work-in-progress compiler
which does not address the reliability concerns associated with node
and communication failures plaguing edge devices [58]. We discuss
the future extensions of the language to tackle both reliability and
security concerns in Section 7. We summarize the contributions of
Hailstorm as follows:
• A statically-typed purely functional language for IoT
applications. Hailstorm provides a tailored, purely func-
tional alternative to the current state of programming re-
source constrained IoT devices.
• Resource Types based I/O. Hailstorm builds on Winograd-
Cort et al’s work to provide the semantics and implemen-
tation of an alternate model of I/O for pure functional lan-
guages using resource types - which fits the streaming pro-
gramming model of IoT applications. (Section 4.1)
• Discrete time implementation Hailstorm uses the combi-
nators of arrowized FRP in a discrete time setting (Section
3).
• An implementation of the Hailstorm language.We im-
plement Hailstorm as a standalone compiler, with Erlang
and LLVM backends. We have run case studies on the GRiSP
embedded system boards [60], to evaluate the features of the
language. (Section 4). The compiler implementation and the
examples presented in the paper are made publicly available1.

2 LANGUAGE OVERVIEW
In this section we demonstrate the core features and syntax of
Hailstorm using running examples. We start with a simple pure
function that computes the 𝑛𝑡ℎ Fibonacci number.

def main : Int = fib 6

def fib : (Int -> Int)
= fib_help 0 1

def fib_help (a : Int) (b : Int) (n : Int) : Int
= if n == 0
then a
else fib_help (a + b) a (n - 1)

The simple program above, besides showing the ML-like syn-
tax of Hailstorm, demonstrates some features like (1) higher-order
functions (2) recursion (3) partial application (4) tail-call optimiza-
tion and (5) static typing. All top-level functions in a Hailstorm
program have to be annotated with the types of the arguments and
1https://abhiroop.github.io/ppdp-2020-artifact.zip

the return type, which currently allows only monomorphic types.
However certain built-in combinators supported by the language
are polymorphic which will be discussed in the following section.

The pure core of the language only allows writing pure functions
which have no form of interactions with the outside world. To
introduce I/O and other side effects, we need to describe the concept
of a signal function.

2.1 Signal Functions
A fundamental concept underlying the programming model of
Hailstorm is that of a Signal Function. Signal Functions, derived
from the work on arrowized-FRP [46], are functions that always
accepts an input and always returns an output.

Signal functions are analogous to the nodes of a dataflow graph.
Signal functions operate on signals which do not have any concrete
representation in the language. A signal denotes a discrete value
at a give point of time. Nilsson et al [46] use the electric circuit
analogy: a signal corresponds to a wire and the current flowing
through it, while signal functions correspond to circuit components.
An important distinction between Hailstorm and both classic and
arrowized-FRP is that signals are always treated as discrete entities
in Hailstorm unlike the continuous semantics enforced by FRP.

To create larger programs Hailstorm provides a number of built-
in combinators to compose signal functions. These combinators are
drawn from the Arrow framework [31] which is a generalization
of monads. Arrows allow structuring programs in a point-free style,
while providing mathematical laws for composition. We start by
presenting some of the core Hailstorm combinators2 and their types
for composing signal functions.

mapSignal# : (a -> b) -> SF a b
(>>>) : SF a b -> SF b c -> SF a c
(&&&) : SF a b -> SF a c -> SF a (b, c)
(***) : SF a b -> SF c d -> SF (a, c) (b, d)

Some of the built-in combinators in Hailstorm are polymorphic
and the type parameters a, b and c represent the polymorphic
types. mapSignal# is the core combinator which lifts a pure Hail-
storm function to the synchronous language of arrows, as a signal
function (See Fig 1).
Hailstorm then provides the rest of the built-in combinators to

compose signal functions while satisfying nine arrow laws [39].
One of the advantages of having a pure functional language is
that such laws can be freely used by an optimizing compiler to
aggressively inline and produce optimized code. The semantics of
composing signals with the arrow combinators is visually depicted
in Fig 1.

2Non-symbolic built-in combinators & driver functions in Hailstorm end with #

28 CHAPTER 2. THE HAILSTORM IOT LANGUAGE

Figure 1: Arrow combinators for signal functions

Nowwhere do signals actually come from? To answer this question
- a natural extension to signal functions is using them to interact
with I/O, which we discuss in the next section.

2.2 I/O
Hailstorm adopts a streaming programming model, where an effect-
ful program is constructed by composing various signal functions
in the program. The final program is embedded in a stream of input
flowing in and the program transforms that into the output.

Figure 2: A Hailstorm program interacting with the real
world

While this model of I/O adapts well with a pure functional lan-
guage, it is reminiscent of the now abandoned stream-based I/O
interface in Haskell. In Haskell’s early stream-based I/O model, the
type of the main function was [Response] → [Request]. The
major problems with this model are :
• All forms of I/O are restricted to happen at the main func-
tion leading to non-modular programs, especially in case
of applications running on IoT devices where I/O functions
dominate the majority of the program.
• It is non-extensible as the concrete types of Request and
Response need to be altered every time any new I/O facility
has to be added [48].
• There is also no clearmapping between an individual Request
and its Response [48].

Work by Winograd-Cort et al. on resource types [66] attempts
to address this problem by virtualizing real-world devices as signal
functions. What we mean here by "virtualizing" is that the scope of
a program is extended so that devices like sensors and actuators
are represented using signal functions. For example:

sensor : SF () Int
uart_rx : SF () Byte
actuator : SF Bool ()

We adopt this model in Hailstorm. The type parameter () repre-
sents a void type. There are no values in the language which inhabit
the () type. The () type always appears within a signal function.
So, an example like sensor : SF () Int - this represents an action
which when called, produces an integer.

One of the key aspects of designing a pure functional language
is this distinction between an expression that returns a value and
an action. When an action (like sensor : SF () Int) is evaluated,
it returns a representation of that function call rather than actually
executing the call itself. This distinction is the key to equational
reasoning in a purely functional program. In the absence of such a
distinction the following two expressions are no longer equivalent
although they represent the same programs.

-- Expression 1 : accepts an input and
-- duplicates that input to return a pair
let x = getInput -- makes one I/O call
in (x,x)

-- Expression 2 : accepts two inputs
-- returns both of them as a pair
(getInput, getInput) -- makes two I/O calls

After enforcing a difference between values and action in the
language, we soon encounter one of the pitfalls of treating a real-
world object as a virtual device - it allows a programmer to write
programs with unclear semantics. For example:

def foo : SF () (Int, Int) = sensor &&& sensor

Although the above program is currently type correct, it can
have two conflicting semantics - (1) either sensor &&& sensor
implies two consecutive calls to the sensor device or (2) a single call
emitting a pair. Given the type of the sensor function, the latter
is not supported and the former is incompatible with Hailstorm’s
discrete, synchronous semantics.

The notion of Resource Types seeks to solve this problem by label-
ing each device with a type-level identifier, such that duplicating a
device becomes impossible in the program. We change the type of
sensor to :

resource S

sensor : SF S () Int

The resource keyword in Hailstorm declares a type level identifier
which is used for labeling signal functions like sensor above. All the
built-in arrow combinators introduced previously are now enriched
with new type-level rules for composition as follows:

mapSignal# : (a -> b) -> SF Empty a b
(>>>) : SF 𝑟1 a b -> SF 𝑟2 b c -> SF (𝑟1 ∪ 𝑟2) a c
(&&&) : SF 𝑟1 a b -> SF 𝑟2 a c -> SF (𝑟1 ∪ 𝑟2) a (b, c)
(***) : SF 𝑟1 a b -> SF 𝑟2 c d -> SF (𝑟1 ∪ 𝑟2) (a, c) (b, d)

In the combinators above, the type parameters 𝑟1, 𝑟2 represent
polymorphic resource type variables, which act as labels for the
effectful signal functions. The combinator mapSignal# lifts a pure

29

Hailstorm function to a signal function without any effectful oper-
ations, and as a result the resource type is Empty. The combinators
>>>, &&& and ∗ ∗ ∗ compose signal functions, and result in a
disjoint-union of the two resources types. This type-level disjoint
union prevents us from copying the same resource using any of
these combinators. So in Hailstorm if we try this,

def foo : SF (𝑆 ∪ 𝑆) () (Int, Int) = sensor &&& sensor

we currently get the following upon compilation:

Type-Checking Error:
Error in "foo":
Cannot compose resources : S S containing same resource
Encountered in

sensor &&& sensor

The type rules associated with composingHailstorm combinators
and their operational semantics are presented formally in Section
3.2 and 3.3 respectively.

2.2.1 Example of performing I/O. We can distinguish the read and
write interface of a resource using two separate resource types. For
example, to repeatedly blink an LED we need two APIs - (1) to read
its status (2) to write to it. The drivers for these two functions have
the following types:

readLed# : SF R () Int
writeLed# : SF W Int ()

We use the integer 1 to represent light ON status and 0 for OFF.
The program for blinking the LED would be:

def main : SF (𝑅 ∪𝑊) () () =
readLed# >>> mapSignal# flip >>> writedLed#

def flip (s : Int) : Int =
if (s == 0) then 1 else 0

The above program runs the function main infinitely. It is possible
to adjust the rate at which we want to run this program, discussed
later in Section 2.5. This treatment of I/O as signal functions has
the limitation that each device (as well as their various APIs) has
to be statically encoded as a resource type in the program.

2.3 State
Hailstorm supports stateful operations on signals using the loop#
combinator.

loop# : c -> SF Empty (a, c) (b, c) -> SF Empty a b

The type of the loop# combinator is slightly different from the
type provided by the ArrowLoop typeclass in Haskell, in that it
allows initializing the state type variable c. The internal body of the
signal function encapsulates a polymorphic state entity. This entity
is repeatedly fed back as an additional input, upon completion of a
whole step of signal processing by the entire dataflow graph. Fig 3
represents the combinator visually.

Figure 3: The stateful loop# function

The loop# combinator can be used to construct the delay func-
tion as found in synchronous languages like Lustre [26], for encod-
ing state.

def delay (x : Int) : SF Empty Int Int =
loop# x (mapSignal# swap)

def swap (a : Int, s : Int) : (Int, Int) = (s, a)

2.4 A sample application
We now demonstrate the use of the Hailstorm combinators in a
sample application. The application that we choose is a simplified
version of an earthquake detection algorithm [65] which was first
used by Mainland et al. to demonstrate their domain specific lan-
guage for wireless sensor networks [42]. The figure below shows
the core dataflow graph of the algorithm.

Figure 4: The earthquake detection dataflow graph

The exponentially weighted moving average (EWMA) compo-
nent above is a stateful element. We assume the getSample input
function is a wrapper around a seismometer providing readings
of discrete samples. At the rightmost end, the Detection Event
would be another stateful entity which would include some form of
an edge detector. The entire program for the earthquake detection
is given in Fig 5.

The function edge in Fig 5 is a stateful edge detector which gen-
erates an action if a boolean signal changes from False to True. To
program this, we use an imaginary actuator (like an LED) in a GRiSP
board, which would glow red once if the input to it is 1, signalling
danger, and otherwise stay green signalling no earthquake.

2.5 Sampling rate
The combinators introduced so far execute instantaneously using
a logical clock. In Hailstorm, one logical time step includes the
following actions, in sequence -
• accepting a discrete sample of data from each of its connected
input devices
• passing the discrete sample through the dataflow graph
• finally passing a discrete value to the responsible actuator

30 CHAPTER 2. THE HAILSTORM IOT LANGUAGE

resource S
resource E

def main : SF (𝑆 ∪ 𝐸) () () =
getSample >>> detect >>> edge

def detect : SF Empty Float Bool
= (ewma high &&& ewma low)
>>> (mapSignal# (\(hi : Float, lo : Float) =>

(hi / lo) > thresh))

def ewma (𝛼 : Float) : SF Empty Float Float
= let func = \(x : Float, x𝑜𝑙𝑑 : Float) =>

let x𝑛𝑒𝑤 = (𝛼 *. x) +. (1.0 -. 𝛼) *. x𝑜𝑙𝑑
in (x𝑛𝑒𝑤, x𝑛𝑒𝑤)

in loop# 0.0 (mapSignal# func)

-- constants
def low : Float = ...
def high : Float = ...
def thresh : Float = ...

def edge : SF E Bool () =
loop# False (mapSignal# edgeDetector) >>>
actuator

def edgeDetector (a : Bool, c : Bool) : (Int, Bool) =
if (c == False && a == True)
then (1, a)
else (0, a)

-- getSample : SF S () Float - Erlang driver
-- actuator : SF E Int () - Erlang driver

Figure 5: The earthquake detection algorithm

Aprogram returning a signal function continuously loops around,
streaming in input and executing the above steps, at the speed it
takes for the instructions to execute. However under most circum-
stances we might wish to set a slower rate for the program. The
rate# combinator is used for that purpose,

rate# : Float -> SF r a b -> SF r a b

The first argument to rate# is the length of the wall clock time
(in seconds) at which we wish to set the period of sampling input.
This helps us establish a relation between the wall clock time and
Hailstorm’s logical clock. We demonstrate the utility of the rate#
combinator using a Stopwatch example.

2.5.1 Stopwatch. We program a hypothetical stopwatch which
accepts an input stream of Ints where 1 represents START, 2 rep-
resents RESET and 3 represents STOP.

def f (g : Float) (a : Int, c : Float) : (Float, Float) =
let inc = c +. g in
case a of

1 ~> (inc, inc);
2 ~> (0.0,0.0);

_ ~> (c,c)

def stopwatch (g : Float) : SF Empty Int Float
= rate# g (loop# 0.0 (mapSignal# (f g)))

def main : SF (I U O) () () =
input >>> stopwatch 1.0 >>> output

In the above program, the rate# combinator uses the argument
g to set the sampling rate to 1 second, which in turn fixes the
granularity of the stopwatch as 1 second.

2.5.2 Limitation. In the current implementation of Hailstorm, an
operation like (rate# 𝑡2 (rate# 𝑡1 sf1)) would result in setting
the final sampling rate as 𝑡2, overwriting the value of 𝑡1. In the
programs presented here, we use a single clock, and hence a single
sampling rate. Libraries like Yampa [14] provide combinators like
𝑑𝑒𝑙𝑎𝑦 :: 𝑇𝑖𝑚𝑒 → 𝑎 → 𝑆𝐹 𝑎 𝑎 which allow oversampling for dealing
with multiple discrete sampling rates. As future work, we hope to
adopt oversampling operators for communication among signal
functions with different sampling rates.

2.6 Switches
A Hailstorm dataflow graph allows a form of dynamic, data-driven
switching within the graph. It accomplishes this using the switch#
combinator:

switch# : SF 𝑟1 a b -> (b -> SF 𝑟2 b c) -> SF (𝑟1 ∪ 𝑟2) a c

The first argument to switch# accepts a signal function whose
output data is used to switch between the various signal functions.
The strict typing of Hailstorm restricts the branches of the switch
to be of the same type, including the resource type. The switching
dataflow is visually presented in Fig 6.

Figure 6: A switch activating only the top signal function

2.6.1 Limitation. switch# is a restrictive combinator with a num-
ber of known limitations:
- switch# constrains all of its branches to be of the same type. This
is particularly restrictive when dealing with actuators where each
actuator would have their own resource type. We currently deal
with the notion of choice in the following way -
... >>> foo >>> (actuator1 *** actuator2)
-- instead of emitting a single value foo will emit a pair
-- of values encoded as (move actuator1, dont move actuator2)

The Arrow framework provides more useful combinators based
on the ArrowChoice typeclass which are currently absent from
Hailstorm.

31

- The switch# combinator is an experiment to describe expressions
of the form:
switch# input_signal_function
(\val => if <𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛1 on val>

then 𝑆𝐹1
else if <𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛2 on val>

then 𝑆𝐹2
else ...)

The combinator currently supports expression only of the above
form. Thus, we currently do not allow more general functions of
type (b→SF b c) as the second parameter to switch#, and so avoid
problems with possibly undefined runtime behaviour. However,
there is no check in the compiler to enforce this restriction. As
future work we hope to adopt the guards syntax of Haskell to
represent the second parameter as a collection of boolean clauses
and their corresponding actions.

3 SYNTAX, SEMANTICS AND TYPES
In the previous sections, we have given an informal treatment to the
most important syntactic parts of Hailstorm, for IoT applications,
and described the programming model using them. In this section,
we present the core syntax, type rules and operational semantics
of the main parts of Hailstorm.

3.1 Syntax
The set of types in the source language is given by the following
grammar.

𝜏 ::= () | Int | Float | Bool |𝜏1 → 𝜏2 |𝜏1
𝑟

=⇒ 𝜏2 | (𝜏1, 𝜏2)

The type 𝜏1
𝑟

=⇒ 𝜏2 represents a signal function type from a to b
with the resource type r i.e SF r a b.

The abstract syntax of the core expressions of Hailstorm is given
by the following grammar. The meta-variable 𝑥 ∈ 𝑉𝑎𝑟 ranges over
variables of the source language. Additionally we let 𝑖 ∈ Z and
𝑓 ∈ R. We use 𝑒 and 𝑒𝑠 𝑓 separately to denote ordinary expressions
and arrow based signal function expressions respectively.

𝑒 ::= 𝑥 |𝑖 |𝑓 |True|False|𝑖1 𝑏𝑖𝑛𝑜𝑝𝑖 𝑖2 |𝑓1 𝑏𝑖𝑛𝑜𝑝 𝑓 𝑓2
|𝑒1 𝑟𝑒𝑙𝑜𝑝 𝑒2 |if 𝑒1 then 𝑒2 else 𝑒3 |𝜆𝑥 : 𝜏 . 𝑒 | (𝑒1 𝑒2)
| let 𝑥 = 𝑒1 in 𝑒2 | (𝑒1, 𝑒2) | fst# 𝑒 | snd# 𝑒

𝑒𝑠 𝑓 ::= mapSignal# (𝜆𝑥.𝑒) |𝑒𝑠 𝑓 1 >>> 𝑒𝑠 𝑓 2
|𝑒𝑠 𝑓 1 &&& 𝑒𝑠 𝑓 2 |𝑒𝑠 𝑓 1 ∗ ∗ ∗ 𝑒𝑠 𝑓 2 |loop# 𝑒1 𝑒2
|switch# 𝑒1 (𝜆𝑥.𝑒) |read#|write#

𝑏𝑖𝑛𝑜𝑝𝑖 ::= + | − | ∗
𝑏𝑖𝑛𝑜𝑝 𝑓 ::= +. | − . | ∗ . | /
𝑟𝑒𝑙𝑜𝑝 ::= > | < | >= | =< | ==

In the grammar above we describe two primitives for I/O called
read# and write#. In practise, as Hailstorm deals with a number
of I/O drivers there exists a variety of I/O primitives with varied
parameters and return types. However for the purpose of presenting
the operational semantics, we abstract away the complexity of the

drivers and use the abstracted read# and write# to describe the
semantics in Section 3.3.

3.2 Type rules
Hailstorm uses a fairly standard set of type rules except for the
notion of resource types. The typing context of Hailstorm employs
dual contexts, in that it maintains (1) Γ - a finite map from variables
to their types and (2)Δ - a finite set which tracks all the I/O resources
connected to the program.

Δ; Γ ::= · | Γ, 𝑥 : 𝜏

An empty context is given by ·. Additionally 𝑑𝑜𝑚(Γ) provides
the set of variables bound by a typing context.

In Fig 7, we show the most relevant type rules concerning signal
functions and their composition. The remaining expressions follow
standard set of type rules which is provided in its entirety in the
extended version of this paper [55].

Looking at the rule T-Mapsignal, a signal function such as 𝜏1
∅

=⇒
𝜏2 denotes the result of applying mapSignal# to a pure function.
This results in an expression with an empty resource type denoted
by ∅. A missing rule is the introduction of a new resource type in
the resource type context Δ. The resource type context is an append-
only store and a new resource is introduced using the keyword
resource. It can be defined using this simple reduction semantics

Δ; Γ ⊢ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑟 ⇝ Δ ∪ 𝑟 ; Γ
where⇝ denotes one step of reduction which occurs at compile-
time. The rules such as T-Compose, T-Fanout, T-Combine, T-Switch
apply a type-level disjoint union to prevent resource duplication.

3.3 Big-step Operational Semantics
In this section, we provide a big-step operational semantics of
our implementation of the Hailstorm language, by mapping the
meaning of the terms to the lambda calculus. We begin by defining
the values in lambda calculus that cannot be further reduced:

𝑉 ::= 𝑖 | 𝑓 | 𝜆𝑥.𝐸
i and f represent integer and float constants respectively. We

use n to represent variables and the last term denotes a lambda
expression. The syntax that we use for defining our judgements is
of the form :

𝑠1 ⊢ 𝑀 ⇓ 𝑉𝑖 , 𝑠2

The variables 𝑠1, 𝑠2 are finite partial functions from variables n
to their bound values 𝑉𝑖 ∈ 𝑉 . In case a variable n is unbound and s
is called with that argument it returns ∅. The above judgement is
read as starting at state 𝑠1 and evaluating the term M results in the
irreducible value 𝑉𝑖 ∈ 𝑉 while setting the final state to 𝑠2.

The first judgement essential for our semantics is this,

𝑠 ⊢ 𝑉 ⇓ 𝑉 , 𝑠

which means that the values V cannot be reduced further.
We use a shorthand notation 𝜌 (𝑛, 𝑠) to signify lookup the vari-

able n in s. Additionally, to make the semantics more compact we

32 CHAPTER 2. THE HAILSTORM IOT LANGUAGE

Δ; Γ ⊢ 𝑒 : 𝜏1 → 𝜏2 (T-Mapsignal)

Δ; Γ ⊢𝑚𝑎𝑝𝑆𝑖𝑔𝑛𝑎𝑙# 𝑒 : 𝜏1
∅

=⇒ 𝜏2

Δ; Γ ⊢ 𝑒1 : 𝜏1
𝑟1
=⇒ 𝜏2 Δ; Γ ⊢ 𝑒2 : 𝜏2

𝑟2
=⇒ 𝜏3 𝑟1, 𝑟2 ∈ Δ 𝑟1 ∩ 𝑟2 = ∅

(T-Compose)

Δ; Γ ⊢ 𝑒1 >>> 𝑒2 : 𝜏1
𝑟1∪𝑟2
=⇒ 𝜏3

Δ; Γ ⊢ 𝑒1 : 𝜏1
𝑟1
=⇒ 𝜏2 Δ; Γ ⊢ 𝑒2 : 𝜏1

𝑟2
=⇒ 𝜏3 𝑟1, 𝑟2 ∈ Δ 𝑟1 ∩ 𝑟2 = ∅

(T-Fanout)

Δ; Γ ⊢ 𝑒1 &&& 𝑒2 : 𝜏1
𝑟1∪𝑟2
=⇒ (𝜏2, 𝜏3)

Δ; Γ ⊢ 𝑒1 : 𝜏1
𝑟1
=⇒ 𝜏2 Δ; Γ ⊢ 𝑒2 : 𝜏3

𝑟2
=⇒ 𝜏4 𝑟1, 𝑟2 ∈ Δ 𝑟1 ∩ 𝑟2 = ∅

(T-Combine)

Δ; Γ ⊢ 𝑒1 ∗ ∗ ∗ 𝑒2 : (𝜏1, 𝜏3)
𝑟1∪𝑟2
=⇒ (𝜏2, 𝜏4)

Δ; Γ ⊢ 𝑒 : (𝜏1, 𝜏𝑐)
∅

=⇒ (𝜏2, 𝜏𝑐) Δ; Γ ⊢ 𝑐 : 𝜏𝑐 (T-Loop)

Δ; Γ ⊢ 𝑙𝑜𝑜𝑝# 𝑐 𝑒 : 𝜏1
∅

=⇒ 𝜏2

Δ; Γ ⊢ 𝑡 : 𝐹𝑙𝑜𝑎𝑡 Δ; Γ ⊢ 𝑒 : 𝜏1
𝑟

=⇒ 𝜏2 𝑟 ∈ Δ
(T-Rate)

Δ; Γ ⊢ 𝑟𝑎𝑡𝑒# 𝑡 𝑒 : 𝜏1
𝑟

=⇒ 𝜏2

Δ; Γ ⊢ 𝑒1 : 𝜏1
𝑟1
=⇒ 𝜏2 Δ; Γ ⊢ 𝑒2 : 𝜏2 → 𝜏2

𝑟2
=⇒ 𝜏3 𝑟1, 𝑟2 ∈ Δ 𝑟1 ∩ 𝑟2 = ∅

(T-Switch)

Δ; Γ ⊢ 𝑠𝑤𝑖𝑡𝑐ℎ# 𝑒1 𝑒2 : 𝜏1
𝑟1∪𝑟2
=⇒ 𝜏3

𝑟 ∈ Δ (T-Read)

Δ; Γ ⊢ 𝑟𝑒𝑎𝑑# : () 𝑟
=⇒ 𝜏

𝑟 ∈ Δ (T-Write)

Δ; Γ ⊢ 𝑤𝑟𝑖𝑡𝑒# : 𝜏
𝑟

=⇒ ()

Figure 7: Typing rules of signal functions in Hailstorm

𝑠 ⊢ 𝑒𝑥𝑝 ⇓ 𝜆𝑥.𝐸, 𝑠
(eval-Mapsignal)

𝑠 ⊢𝑚𝑎𝑝𝑆𝑖𝑔𝑛𝑎𝑙# 𝑒𝑥𝑝 ⇓ 𝜆𝑥 .𝐸, 𝑠
𝑠1 ⊢ 𝑒𝑥𝑝1 ⇓ 𝑉1, 𝑠2 𝑠2 ⊢ 𝑒𝑥𝑝2 ⇓ 𝑉2, 𝑠3

(eval-Compose)
𝑠1 ⊢ 𝑒𝑥𝑝1 >>> 𝑒𝑥𝑝2 ⇓ 𝜆𝑥 .𝑉2 (𝑉1 𝑥), 𝑠3

𝑠1 ⊢ 𝑒𝑥𝑝1 ⇓ 𝑉1, 𝑠2 𝑠2 ⊢ 𝑒𝑥𝑝2 ⇓ 𝑉2, 𝑠3
(eval-Fanout)

𝑠1 ⊢ 𝑒𝑥𝑝1 &&& 𝑒𝑥𝑝2 ⇓ 𝜆𝑥. < 𝑉1 𝑥,𝑉2 𝑥 >, 𝑠3

𝑠1 ⊢ 𝑒𝑥𝑝1 ⇓ 𝑉1, 𝑠2 𝑠2 ⊢ 𝑒𝑥𝑝2 ⇓ 𝑉2, 𝑠3
(eval-Combine)

𝑠1 ⊢ 𝑒𝑥𝑝1 ∗ ∗ ∗ 𝑒𝑥𝑝2 ⇓ 𝜆𝑥.𝜆𝑦. < 𝑉1 𝑥,𝑉2 𝑦 >, 𝑠3

𝑠1 ⊢ 𝑖𝑛𝑖𝑡 ⇓ 𝑉𝑖 , 𝑠2 𝑠2 ⊢ 𝑒𝑥𝑝 ⇓ 𝑉1, 𝑠3 𝑛 ∉ 𝑑𝑜𝑚(𝑠3)
(eval-Loop-Init)

𝑠1 ⊢ 𝑙𝑜𝑜𝑝#𝑛 𝑖𝑛𝑖𝑡 𝑒𝑥𝑝 ⇓ 𝜆𝑥 .𝑓 𝑠𝑡 (𝑉1 (𝑥, 𝑉𝑠)), 𝑠3 [𝑛 ↦→ 𝑠𝑛𝑑 (𝑉1 (𝑥, 𝑉𝑖))]
𝑠1 ⊢ 𝑖𝑛𝑖𝑡 ⇓ 𝑉𝑖 , 𝑠2 𝑠2 ⊢ 𝑒𝑥𝑝 ⇓ 𝑉1, 𝑠3 𝑛 ∈ 𝑑𝑜𝑚(𝑠3)

(eval-Loop)
𝑠1 ⊢ 𝑙𝑜𝑜𝑝#𝑛 𝑖𝑛𝑖𝑡 𝑒𝑥𝑝 ⇓ 𝜆𝑥 .𝑓 𝑠𝑡 (𝑉1 (𝑥, 𝜌 (𝑛, 𝑠3))), 𝑠3 [𝑛 ↦→ 𝑠𝑛𝑑 (𝑉1 (𝑥, 𝜌 (𝑛, 𝑠3)))]

𝑠1 ⊢ 𝑒2 ⇓ 𝑉 , 𝑠2 𝑠2 ⊢ 𝑒1 ⇓ 𝜆𝑥 .𝐸1, 𝑠3 𝑠3 ⊢ 𝐸1 [𝑥 ↦→ 𝑉] ⇓ 𝑉𝑓 , 𝑠4
(eval-App)

𝑠1 ⊢ (𝑒1 𝑒2) ⇓ 𝑉𝑓 , 𝑠3

𝑠1 ⊢ 𝑡 ⇓ 𝑉𝑡 , 𝑠2 [Ψ ↦→ 𝑉𝑡] 𝑠2 [Ψ ↦→ 𝑉𝑡] ⊢ 𝑒𝑥𝑝 ⇓ 𝑉 , 𝑠3
(eval-Rate)

𝑠1 ⊢ 𝑟𝑎𝑡𝑒# 𝑡 𝑒𝑥𝑝 ⇓ 𝑉 , 𝑠3

𝑠1 ⊢ 𝑒𝑥𝑝1 ⇓ 𝑉1, 𝑠2 𝑠2 ⊢ 𝑒𝑥𝑝2 ⇓ 𝜆𝑏.𝜎𝑏 [𝜆𝑐.𝐸1, 𝜆𝑐.𝐸2, ...𝜆𝑐.𝐸𝑛], 𝑠3
(eval-Switch)

𝑠1 ⊢ 𝑠𝑤𝑖𝑡𝑐ℎ# 𝑒𝑥𝑝1 𝑒𝑥𝑝2 ⇓ 𝜆𝑎.((𝜆𝑏.𝜎𝑏 [𝜆𝑐.𝐸1, 𝜆𝑐.𝐸2, ...𝜆𝑐.𝐸𝑛]) (𝑉1 𝑎)) (𝑉1 𝑎), 𝑠3
(eval-Read)

𝑠 ⊢ 𝑟𝑒𝑎𝑑# ⇓ 𝜆𝑥.𝑟𝑒𝑎𝑑, 𝑠 (eval-Write)
𝑠 ⊢ 𝑤𝑟𝑖𝑡𝑒# ⇓ 𝜆𝑥 .(𝑤𝑟𝑖𝑡𝑒 𝑥), 𝑠

Figure 8: Big-Step Operational Semantics of signal functions in Hailstorm

use pairs <a,b> and their first and second projections, fst, snd.
They do not belong to V but it is possible to represent all three of
them using plain lambdas and function application - shown in the
extended version of this paper [55].

In Fig 8, we show the most relevant big-step operational seman-
tics concerning signal function based combinators. The remaining
expressions have standard semantics and the complete rule set is
provided in the extended paper [55]. In the rule eval-Rate, we use
Ψ to store the sampling rate. In our current implementation, when
composing signal functions with different sampling rates, the state
transition from 𝑠2 to 𝑠3 overwrites the first sampling rate.

In eval-Loop-Init and eval-Loop, the subscript n represents
a variable name that is used as a key, in the global state map s, to
identify each individual state.

For the rule eval-Switch, 𝜎𝑏 [𝜆𝑐.𝐸1, 𝜆𝑐.𝐸2, ...𝜆𝑐.𝐸𝑛] represents a
conditional expression that uses the value of b i.e. (𝑉1 𝑎) to choose
one of the several branches - 𝜆𝑐.𝐸𝑖 - and then supplies (𝑉1 𝑎) again
to the selected branch to actually generate a value of the stream.

Of special interest in Fig 8 are the rules eval-Read and eval-Write.
We need to extend our lambda calculus based abstract machine with
the operations, read and write, to allow any form of I/O. The ef-
fectful operations, read and write, are guarded by 𝜆s to prevent

33

any further evaluation, and as a result are treated as values. This
method is essential to ensure the purity of the language - by treating
effectful operations as values.

The programundergoes a partial evaluation transformationwhich
evaluates the entire program to get rid of all the 𝜆s guarding the
read operations. Given the expression 𝜆𝑥 .𝑟𝑒𝑎𝑑 the compiler sup-
plies a compile time token of type () which removes the 𝑙𝑎𝑚𝑏𝑑𝑎
and exposes the effectful function read. The partially evaluated
program is then prepared to conduct I/O. This approach is detailed
further in Section 4.1.
The big-step semantics of the language shows its evaluation

strategy. However to understand the streaming, infinite nature of
an effectful Hailstorm program we need an additional semantic
rule. A Hailstorm function definition is itself an expression and a
program is made of a list of such functions,

𝑃𝑟𝑜𝑔𝑟𝑎𝑚 ::=𝑚𝑎𝑖𝑛 : [𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛]
𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ::= 𝑒 |𝑒𝑠 𝑓

Each Hailstorm program compulsorily has a main function. After
the entire program is partially evaluated (described in Section 4.1)
and given that the main function causes a side effect (denoted by
() below), we have the following rule:

𝑠1 ⊢𝑚𝑎𝑖𝑛 ⇓ (), 𝑠2 (eval-Main)
𝑠1 ⊢𝑚𝑎𝑖𝑛 ⇓𝑚𝑎𝑖𝑛, 𝑠2

The eval-Main rule demonstrates the streaming and infinite
nature of a Hailstorm program when the main function is a signal
function itself. After causing a side effect, it calls itself again and
continues the stream of effects while evaluating the program using
the semantics of Fig 8.

4 IMPLEMENTATION
Here we describe an implementation of the Hailstorm language
and programming model presented in the previous sections. We
implement the language as a compiler - the Hailstorm compiler -
whose compilation architecture is described below.

Figure 9: The Hailstorm compilation architecture

The compiler pipeline starts by parsing a Hailstorm source file
and desugaring small syntactic conveniences provided to reduce
code size (such as case expressions). After desugaring, the Hail-
storm AST constituted of the grammar described in Section 3.1 is
generated. Next, typechecking of the AST using the type rules of
Fig 7 is done. After a program is typechecked, it is transformed into
the Hailstorm core language called L1.
The L1 language is an enriched version of the simply typed

lambda calculus (STLC) with only nine constructors. Unlike STLC,
L1 supports recursion by calling the name of a global function. It
is currently incapable of recursion using a let binding. L1 has a
simpler type system than the Hailstorm source, as it erases the
notion of resource types - which are exclusively used during type
checking.
The L1 language being considerably simpler, forms a sufficient

foundation for running correctness preserving optimization passes.
L1 attempts to get rid of all closures with free variables, as they are
primarily responsible for dynamic memory allocation. Additionally,
it attempts to inline expressions (primarily partial applications)
to further reduce both stack and heap memory allocation. The
optimization passes are described in further detail in Section 4.2.

The final optimization pass in L1 is a partial evaluation passwhich
specializes the program to convert it into an effectful program.
Before this pass, all I/O inducing functions are treated as values,
by guarding them inside a 𝜆 abstraction. This pass evaluates those
expressions by passing a compile-time token and turning the L1
non-effectful program into an effectful one. This pass is discussed
in further detail in Section 4.1.
Finally, the effectful Hailstorm program gets connected to one

of its backends. Recursion is individually handled in each of the
backends by using a global symbol table. We currently support an
LLVM backend [36] and a BEAM backend [4].

4.1 I/O
The I/O handling mechanism of the Hailstorm compiler is the es-
sential component in making the language pure. A pure functional
language allows a programmer to equationally reason about their
code. The entire program is written as an order independent set of
equations. However, to perform I/O in a programming language,
it is necessary to (1) enforce an order on the I/O interactions, as
they involve chronological effects visible to the user and (2) interact
with the real world and actually perform an effect.

To solve (1) we use the eval-App rule given in Fig 8. Hailstorm,
being a call-by-value implementation of the lambda calculus, fol-
lows ordering in function application by always evaluating the
function argument before passing it to the function. This seman-
tics of function application allows us to introduce some form of
ordering to the equations.

To solve (2) we have extended our pure lambda calculus core to
involve effectful operations like read and write. Again, as observed
in the semantic rules, eval-Read and eval-Write from Fig 8, the
effectful operations are guarded by 𝜆 abstractions to treat them
as values, rather than operations causing side-effects. This allows
us to freely inline or apply any other optimization passes while
preserving the correctness of the code. However, to finally perform
the side effect, we need to resolve this lambda abstraction at compile

34 CHAPTER 2. THE HAILSTORM IOT LANGUAGE

time. We do this by partially evaluating [33] our program. Below
we describe the semantics of the partial evaluation step.

A Hailstorm program is always enforced (by the typechecker in
our implementation) to contain a main function. We shall address
the case of an effectful program i.e a main function whose return
type is an effectful signal function such as SF r () (). The () type
in the input and output parameters reflect that this function reads
from a real world source like a sensor and causes an effect such
as moving an actuator. The partial application pass is only fired
when the program contains the () type in either one of its signal
function parameter.

Let us name the main function above with the return type of SF
r () () as𝑚𝑎𝑖𝑛𝑠 𝑓 . Now𝑚𝑎𝑖𝑛𝑠 𝑓 is itself a function, embedded in
a stream of input and transforming the input to an output, causing
an effect. As it is a function we can write:𝑚𝑎𝑖𝑛𝑠 𝑓 = 𝜆𝑡 .𝐸.

Additionally in our implementation, after typechecking, a signal
function type 𝜏1

𝑟
=⇒ 𝜏2 is reduced to a plain arrow type - 𝜏1 → 𝜏2.

Now, using the two aforementioned definitions, we can write the
following reduction semantics:

𝑚𝑎𝑖𝑛𝑠 𝑓 = 𝜆𝑡 .𝐸 𝑚𝑎𝑖𝑛𝑠 𝑓 : () 𝑟
=⇒ () 𝜏1

𝑟
=⇒ 𝜏2 ⇝ 𝜏1 → 𝜏2

𝜆𝑡 .𝐸 : () 𝑟
=⇒ () ⇝ 𝜆𝑡 .𝐸 : () → ()

(eval-Partial)
𝜆𝑡 .𝐸 : () → () ⇝ 𝐸 [𝑡 ↦→ 𝜃 : ()]

where⇝ denotes one step of reduction and𝜃 denotes an arbitrary
compile time token of type (). The final step, which produces
the expression 𝐸 [𝑡 ↦→ 𝜃 : ()], is the partial evaluation step. We
demonstrate this reduction semantics in action using an example:
read# : SF STDIN () Int
write# : SF STDOUT Int ()

def main : SF (STDIN U STDOUT) () () = read# >>> write#

We use the eval-Read, eval-Write and eval-Compose rules to
translate the main function above to
main = 𝜆𝑡 . (𝜆𝑦. 𝑤𝑟𝑖𝑡𝑒 𝑦) ((𝜆𝑥. 𝑟𝑒𝑎𝑑) 𝑡)

Given the above definition of main, we can apply the reduction
rule eval-Partial and eval-App to get the following,

(Partial evaluation)
𝜆𝑡 . (𝜆𝑦. 𝑤𝑟𝑖𝑡𝑒 𝑦) ((𝜆𝑥. 𝑟𝑒𝑎𝑑) 𝑡) ⇝∗ (𝜆𝑦. 𝑤𝑟𝑖𝑡𝑒 𝑦) (𝑟𝑒𝑎𝑑)
Now the program is ready to create a side effect as the read

function is no longer guarded by a 𝜆 abstraction. The eval-App
rule guarantees that read is evaluated first and only then the value
is fed to write owing to the call-by-value semantics of Hailstorm.

4.1.1 Limitation. The Hailstorm type system doesn’t prevent a
programmer from writing write# >>> read#. The type of such
a program would be SF (STDOUT U STDIN) Int Int. As the
types do not reflect the () type, the partial evaluation pass is not
fired and the program simply generates an unevaluated closure -
which is an expected result given the meaningless nature of the
program. However, the type would allow composing it with other
pure functions and producing bad behaviour if those programs are
connected to meaningful I/O functions. This is simply solved by
adding the following type rule:

𝑟 ∈ Δ 𝑟 ≠ ∅ Δ; Γ ⊢ 𝜏1 = () ∨ 𝜏2 = ()
(T-Unsafe)

𝑒𝑥𝑝 : 𝜏1
𝑟

=⇒ 𝜏2

4.2 Optimizations
4.2.1 Lambda Lifting. Hailstorm, being a functional language, sup-
ports higher order functions (HOFs). HOFs frequently capture free
variables which survive the scope of a function call. For example:

1 def addFive (nr : Int) : Int =
2 let x = 5 in
3 let addX = \(y:Int) => x + y in
4 addX nr

Our implementation treats HOFs as closures which are capable of
capturing an environment by allocating the environment on the
heap. In line no. 3 above, the value of the variable x is heap allocated.
However, in resource constrained devices heap memory allocation,
is highly restrictive and any language targeting such devices should
attempt to minimize allocation.

Hailstorm applies a lambda-lifting [32] transformation to address
this. Lambda-lifting lifts a lambda expression with free variables
to a top-level function and then updates related call sites with a
call to the top-level function. The free variables then act as argu-
ments to the function. This effectively allocates them on the stack
(or registers). Owing to our restricted language and the lack of
polymorphism, our algorithm is less sophisticated than the orig-
inal algorithm devised by Johnsson. We describe the operational
semantics of our algorithm in the lambda-lifting rule below.
We use a slightly different notation from Section 3.3 here. 𝑃𝑛

is used to describe the entire program with its collection of top
level functions. We identify a modified program with 𝑃𝑛 [𝐺 (𝑥).𝐸]
to mean a new program with an additional global function G which
accepts an argument x and returns an expression E. Finally the
𝑓 𝑣 function is used find the set of free variables in a Hailstorm
expression.

𝑃1 ⊢ 𝑒𝑥𝑝 ⇓ 𝜆𝑥 . 𝐸, 𝑃2 𝑓 𝑣 (𝜆𝑥. 𝐸) ≠ ∅
𝑓 𝑣 (𝜆𝑥. 𝐸) = {𝑖1, ..., 𝑖𝑛} 𝑃2 ⊢ 𝜆𝑥. 𝐸 ⇓ 𝐸 ′, 𝑃3 [𝐺 (𝑖1, ..., 𝑖𝑛, 𝑥) . 𝐸]

𝑃1 ⊢ 𝑒𝑥𝑝 ⇓ 𝐸 ′, 𝑃3 [𝐺 (𝑖1, ..., 𝑖𝑛, 𝑥) . 𝐸]
The above rule returns a modified expression 𝐸 ′which consists of

a function call to𝐺 (𝑖1, ..., 𝑖𝑛, 𝑥) . 𝐸 with the free variables 𝑖1, ..., 𝑖𝑛 as
arguments. This rule is repeatedly run on local lambda expressions
until none has any free variables. It transforms the program foo
above to :
def addX' (x:Int) (y:Int) = x + y

def addFive (nr : Int) : Int =
let x = 5 in
addX' x nr

4.2.2 Inlining. The inlining transformation works in tandem with
the lambda lifter to reduce memory allocations. Inlining a lambda
calculus based language reduces to plain 𝛽 reduction. i.e ((𝜆𝑥. 𝑀) 𝐸) ⇝
𝑀 [𝑥 ↦→ 𝐸]. Inlining subsumes optimization passes like copy-propagation
in a functional language. Our prototype inliner is relatively con-
servative in that (1) it doesn’t attempt to inline recursive functions
and (2) it doesn’t attempt inter-function inlining.
However, it attempts to cooperate with the lambda-lifter to re-

move all possible sites of partial applications, which are also heap
allocated, to minimize memory allocation. The program shown in
the previous section, undergoes the cycle in Fig 10

35

Figure 10: Lambda-lifting and inlining in action

The lambda lifting pass produces a partial application which is
further inlined to a single function call where the arguments can be
passed using registers. We show the generated LLVM code before
and after the optimization passes are run in the extended version of
this paper [55]. We show there the absence of any calls to malloc in
the optimized version of the code. Our inliner doesn’t employ any
novel techniques but it still has to deal with engineering challenges
like dealing with name capture [5], which it solves using techniques
from the GHC inliner [34].

4.3 Code Generation
The Hailstorm compiler is designed as a linear pass through a
tower of interpreters which compile away high level features, in the
tradition of Reynolds [51]. Here, we show the final code generation
for two of the more interesting combinators using C-like notation.

4.3.1 loop#. The loop# combinator models a traditional Mealy
machine whose output depends on the input as well as the current
state of the machine. In the following we see the code generated
for the delay combinator described in Section 2.3 which is itself
described using loop#.

In Erlang, the global variable of foo_state is modeled recur-
sively using a global state map, which is updated on every time
step. In the LLVM backend, the translation is very similar to the
C-notation shown above.

4.3.2 switch#. We show an example of the switch# combinator
when dealing with stateful branches

Figure 11: Code generation for switch#
The second parameter in the switch# type - (b→SF b c) - acts

like a macro which is unfolded into an if-then-else expression in the
L1 core language. The core language contains primops for getting
and setting state variables. The final L1 fragment that is generated
for the (b→SF b c) component of switch# (post partial evaluation
phase) is given below:
... -- s1 and s2 recursively in scope
let x = readInt() in
((𝜆 val .

if(val % 2 == 0)
then (𝜆 val2 .

let temp = s1 in
let _ = (set s1 to val2) in
writeInt (f temp))

else (𝜆 val3 .
let temp = s2 in
let _ = (set s2 to val3) in
writeInt (f temp))

) x) x

From the above L1 fragment, the C like imperative code shown
in Fig. 11 is generated. The if-then-else expressions are translated to
case expressions in Erlang and the LLVM translation is very similar
to the C code. The global state map now stores two state variables
which are updated depending on the value of x. To make the oper-
ational aspect of the combinator clearer, we show the evolution of
the state variables through the various timesteps of the program:
INPUT: 2 3 4 5 6 7 8...
s1: 0 2 2 4 4 6 6...
s2: 1 1 3 3 5 5 7...
OUTPUT: 0 3 4 9 8 15 12...

4.4 Pull Semantics
In this section we discuss the semantics of data consumption in
our compiler. There exist two principle approaches (1) demand-
driven pull and (2) data-driven push of data. As Hailstorm’s signal
function semantics assume a continuous streaming flow of data
triggering the dataflow graph, our compiler adopts a pull based
approach which continuously polls the I/O drivers for data. The
program blocks until more data is available from the I/O drivers.
Let us take the earthquake detection example from Section 2.4.

The 𝑔𝑒𝑡𝑆𝑎𝑚𝑝𝑙𝑒 input function in the dataflow graph (Fig. 4) is a

36 CHAPTER 2. THE HAILSTORM IOT LANGUAGE

wrapper around the driver for a simulated seismometer, which
when polled for data provides a reading. The rightmost edge of the
graph for the Detection Event pulls on the dataflow graph after
it completes an action and the rest of the graph in turn pulls on
getSample, which polls the simulated seismometer.
However, in certain devices such as UART, a push based model

is more prevalent, where data is asynchronously pushed to the
drivers. In such cases, to avoid dropping data the wrapper function
(such as getSample) needs to be stateful and introduce buffers that
store the data. The pseudocode of the wrapper function for such a
driver, written for our Erlang backend, would look like Fig 12.

loop(State)
receive
{hailstormcall, From, Datasize} ->

(Data, NewState) = extract_Data(Datasize, State),
From ! {ok, Data},
loop(NewState);

{uartdriver, Message} ->
NewState = buffer(Message, State),
loop(NewState);

end.

Figure 12: Enforcing pull semantics on push-based data

In Fig 12 there are two separate message calls handled. The data
transmission from the drivers is handled using the uartdriver
message call, which continuously buffers the data. On the other
hand, the Hailstorm program, upon finishing one cycle of compu-
tation, requests more data using the hailstormcall message, and
proceeds with the rest of the cycle.

4.4.1 Limitation. Elliott has criticized the use of pull semantics
[19] as beingwasteful in terms of the re-computation required in the
dataflow graph. He advocates a hybrid push-pull approach, which,
in case of continuously changing data, adopts the pull model, but in
the absence of any change in the data doesn’t trigger the dataflow
graph. This approach could be useful in resource constrained de-
vices, where energy consumption is an important parameter, and
we hope to experiment with this approach in future work.

4.5 The digital - analog interface
The runtime of Hailstorm has to deal with the boundary of discrete
digital systems and continuous analog devices. The input drivers
have to frequently discretize events that occur at some unknown
point of time into a stream of discrete data. An example is the
Stopwatch simulation from Section 2.5.1. The pressing of an ON
button in a stopwatch translates to the stream of ones (111...) and
when switched OFF the simulation treats that as a stream of zeroes.
This stream transformation is handled by the wrapper functions
around the input drivers.
On the contrary, for the output drivers a reverse translation

of discrete to continuous is necessary. We can take the example
of operating traffic lights (related demonstration in Section 5.1.2).
When operating any particular signal like GREEN supplying a
discrete stream of data (even at the lowest granularity) will lead to
a flickering quality of the light. In that case the wrapper function

for the light drivers employs a stateful edge detector, as discussed
in Section 2.4, to supply a new signal only in case of change.

4.6 Backend specific implementation
The backend implementation includes
• Memory management. The compiler attempts to minimize
the amount of dynamically allocated memory using lambda-
lifting and inlining such that the respective garbage collectors
have to work less. Future work hopes to experiment with
static memory management schemes like regions [61].
• Tail call optimization (TCO). Erlang itself does TCO and
LLVM supports TCO when using the fastcc calling con-
vention.

5 EVALUATION
5.1 Case Studies
In this section we demonstrate examples from the synchronous
language literature [30] written in Hailstorm.

5.1.1 Watchdog process. A watchdog process monitors a sequen-
tial order processing system. It raises an alarm if processing an
order takes more than a threshold time. It has two input signals - (1)
𝑜𝑟𝑑𝑒𝑟 : 𝑆𝐹 𝑂 () 𝐵𝑜𝑜𝑙 which emits𝑇𝑟𝑢𝑒 when an order is placed and
𝐹𝑎𝑙𝑠𝑒 otherwise, (2) 𝑑𝑜𝑛𝑒 : 𝑆𝐹 𝐷 () 𝐵𝑜𝑜𝑙 which also emits𝑇𝑟𝑢𝑒 only
when an order is done. For output we use - 𝑎𝑙𝑎𝑟𝑚 : 𝑆𝐹 𝐴 𝐵𝑜𝑜𝑙 ()
where an alarm is rung only when𝑇𝑟𝑢𝑒 is supplied. In the program
below we keep a threshold time for order processing as 3 seconds.

def f ((order : Bool, done : Bool),
(time : Int, openOrder : Bool)) : (Bool, (Int, Bool))

= if (openOrder == True && time > 3)
then (True,(time + 1, False)) -- set alarm once
else if (done == True)

then (False, (0, False)) -- reset
else if (order == True)

then (False, (0, True))
else (False, (time + 1, openOrder))

def watchdog : SF (O ∪ D ∪ A) () () = (order &&& done) >>>
(loop# (0, False) (mapSignal# f)) >>> alarm

def main : SF (O ∪ D ∪ A) () () = rate# 1.0 watchdog

5.1.2 A simplified traffic light system. We take the classic example
of a simplified traffic light system from the Lustre literature [53].
The system consists of two traffic lights, governing a junction of
two (one-way) streets. In the default case, traffic light 1 is green,
traffic light 2 is red. When a car is detected at traffic light 2, the
system switches traffic light 1 to red, light 2 to green, waits for 20
seconds, and then switches back to the default situation.

We use a sensor - 𝑠𝑒𝑛𝑠𝑜𝑟 : 𝑆𝐹 𝑆 () 𝐵𝑜𝑜𝑙 - which keeps returning
𝑇𝑟𝑢𝑒 as long as it detects a car. The system, upon detecting a sub-
sequent car, resets the wait time to another 20 seconds. We sample
from the sensor every second. For the traffic lights, we use 1 to
indicate green and 0 for red.

37

def lightSwitcher (sig : Bool, time : Int):((Int, Int), Int)
= if (time > 0)
then ((0,1), time - 1)
else if (sig == True)

then ((0,1), 20) -- reset
else ((1,0), 0) -- default

def lightController : SF (𝑆 ∪𝑇𝐿1 ∪𝑇𝐿2) () ((), ()) =
sensor >>> (loop# 0 (mapSignal# lightSwitcher)) >>>
(trafficLight1 *** trafficLight2)

def main : SF (𝑆 ∪𝑇𝐿1 ∪𝑇𝐿2) () () =
rate# 1.0 lightController

-- sensor : SF S () Bool
-- trafficLight1 : SF TL1 Int ()
-- trafficLight2 : SF TL1 Int ()

5.1.3 A railway level crossing.

The problem. We consider a two-track railway level crossing area
that is protected by barriers, that must be closed in time on the
arrival of a train, on either track. They remain closed until all trains
have left the area. The barriers must be closed 30 seconds before
the expected time of arrival of a train. When the area becomes
free, barriers could be opened, but it’s not secure to open them for
less than 15 s. So the controller must be warned 45 s before a train
arrives. Since the speed of trains may be very different, this speed
has to be measured, by detecting the train at two points separated
by a known distance. A first detector is placed 2500 m before the
crossing, and a second one 100 m after this first. A third is placed
after the crossing area, and records a train’s leaving. We divide our
solution into three programs.

The Detect Process. The passage of a train is detected by a me-
chanical device, producing a 𝑇𝑟𝑢𝑒 pulse - 𝑝𝑢𝑙𝑠𝑒 : 𝑆𝐹 𝑃 () 𝐵𝑜𝑜𝑙 -
only when a wheel runs on it (otherwise 𝐹𝑎𝑙𝑠𝑒). The detect pro-
cess receives all these pulses, but warns the controller only once,
on the first wheel. All following pulses are ignored.
def f (curr : Bool, old : Bool) : (Bool, Bool) =
if (curr == True && old == False)
then (True, curr) else (False, curr)

def detect : SF P () Bool =
pulse >>> loop# False (mapSignal# f)

A Track Controller. On each track, a controller receives signals
from two detectors. From Detect1 and Detect2, it must compute
the train’s speed, and warn the barriers 45 seconds before expected
time of arrival at crossing. At the maximum speed of 180 km/h, the
100 m between Detect1 and Detect2 are covered in 2 s. So, a clock
pulse every 0.1 s would be of good accuracy.
def t ((d1 : Bool, d2 : Bool), time:Float) : (Float, Float)
= case (d1, d2) of

(True, False) ~> (0.0,0.0);
(False, True) ~> ((24.0 *. (time +. 0.1) -. 45.0),0.0);
_ ~> (0.0, time +. 0.1)

def timer : SF Empty (Bool, Bool) Float

= rate# 0.1 (loop# 0.0 (mapSignal# t))

def trackController : SF (𝑃1 ∪ 𝑃2) () Float
= (detect1 &&& detect2) >>> timer

def detect1 : SF 𝑃1 () Bool = ...
def detect2 : SF 𝑃2 () Bool = ...

When a train approaches, the trackController calculates the
time for the train to reach the barrier and sends that value. In the
absence of a train it sends zeroes.

The Barriers Controller. It consists of an alarm - 𝑎𝑙𝑎𝑟𝑚 : 𝑆𝐹 (𝑃1 ∪
𝑃2) () 𝐵𝑜𝑜𝑙 which consumes the time values from the trackController
and returns𝑇𝑟𝑢𝑒 when an alarm is to be rung. The trackController
is also sampled every 0.1 second.
def g (sig : Float, time : Float) : (Bool, Float) =
if (sig > 0.0)
then (False, sig)
else if (time == 0.1)

then (True, 0.0)
else (False, time -. 0.1)

def alarm : SF (𝑃1 ∪ 𝑃2) () Bool
= trackController >>> rate# 0.1 (loop# 0.0 (mapSignal# g))

Given the alarms from the two separate tracks, the barrier con-
troller sends an open/close signal represented by 0 and 1 respec-
tively. In case a train is approaching in both of the tracks at the
same speed - the barrier for only track 1 is opened.
def alarm1 : SF (𝑃1 ∪ 𝑃2) () Bool = ...
def alarm2 : SF (𝑃3 ∪ 𝑃4) () Bool = ...

def openclose (sig : (Bool, Bool)) : (Int, Int) =
case sig of

(True, False) ~> (0, 1);
(False, True) ~> (1, 0);
(True , True) ~> (0, 1);
_ ~> (0, 0) -- (False, False)

def barrierController : SF (𝑃1 ∪ 𝑃2 ∪ 𝑃3 ∪ 𝑃4) () (Int, Int)=
alarm1 &&& alarm2 >>> (mapSignal# openclose)

Finally, before sending the signal to the actuators (i.e the barriers),
we need an additional system clock that keeps each barrier open for
45 seconds, and ignores other signals in the interim. The handling
of the conversion of discrete signals to continuous is done by the
drivers for the actuators, as discussed in Section 4.5.
def gate ((x : Int, y : Int),

(t : Float, old : (Int, Int))) :
((Int, Int) , (Float, (Int, Int))) =

if (old ≠ (0,0) ∧ t > 0.0)
then (old, ((t -. 0.1), old)) -- persisting a signal
else if (x == 1 ∨ y == 1)

then ((x,y), (45.0, (x, y)))
else ((x,y), (0.0, (x,y)))

def main : SF (𝑃1 ∪ 𝑃2 ∪ 𝑃3 ∪ 𝑃4 ∪ 𝐵1 ∪ 𝐵2) () ((), ()) =
rate# 0.1 (barrierController >>>

(loop# (0.0, (0,0)) (mapSignal# gate)) >>>
(barrier1 *** barrier2))

38 CHAPTER 2. THE HAILSTORM IOT LANGUAGE

-- barrier1 : SF 𝐵1 Int ()
-- barrier2 : SF 𝐵2 Int ()

Note that the three instances of rate# all sample at the same in-
terval of 0.1 seconds. Hailstorm currently doesn’t have well defined
semantics for programs with multiple clock rates.

5.2 Microbenchmarks
Here we provide memory consumption and response-time micro-
benchmarks for the examples presented above using the Erlang
backend.

Figure 13: Memory consumption of programs

We measure the mean memory consumption for each program
over five runs, each of five minutes duration. Given the I/O driven
nature of the programs, the memory consumption shows little to
no fluctuations. The Erlang runtime (ERTS) upon initialization sets
up the garbage collector, initializes the lookup table and sets up the
bytecode-interpreter which occupies 30 MB of memory on average.
The actual program and its associated bookkeeping structures takes
up an average of 1.5 MB of memory in the programs above. The
garbage collector remains inactive throughout the program run.
The memory spike visible upon termination is the garbage collector
pausing the program and collecting all residual memory.

Program Run1(ms) Run2(ms) Run3(ms)
watchdog 7.7 8.65 11.4
traffic-light 3.81 3.04 2.12

train controller 29.72 28.05 29.8
Table 1: Response time measured in milliseconds

Table 1 shows the response time for the programs measured in
milliseconds. We measure the CPU Kernel time (CPUT) - which
calculates the time taken by the dataflow graph to finish one cycle
of computation. We show three separate runs where the Erlang
virtual machine is killed and restarted to reset the garbage collector.
Each of the numbers are an average of twenty iterations of data
processing. We use the erlang:statisticsmodule for measuring

time and in the applications I/O happens over the command line
interface, which explains the overall slow behaviour (tens of mil-
liseconds). The metrics are run on the erts-10.6.4 runtime and
virtual machine running on a Macbook-Pro with a 2.9 GHz Intel
Core i9 processor. A common observation is that the computation
takes less than 1% of the total wall clock time involved in the re-
sponse rate, showing that the I/O reading/writing times dominate
the final response rate.

An alternate benchmarking strategy which we used was to model
the input from the sensors as an in-memory structure (in Erlang)
and compute the total response time for processing those values
using the timer:tc module:

Program Run1(𝜇s) Run2(𝜇s) Run3(𝜇s)
watchdog 97.3 106.7 98.7
traffic-light 110.8 120.2 115.1

train controller 144.3 128.1 138.7
The above values are all measured in microseconds which are av-

eraged over forty iterations each. As expected, using an in-memory
structure results in graph processing times that are much lower
than those in Table 1.

6 RELATEDWORK
6.1 Programming Languages for IoT
There has been recent work on designing embedded DSLs (EDSLs)
for IoT applications [11]. In EDSLs, I/O is handled by embedding
a pure core language inside a host language’s I/O model - which
is an approach that Hailstorm deliberately avoids. Given the I/O
dominated nature of IoT apps, we choose to focus much of our
attention on designing a composable stream based I/Omodel, rather
than only considering the pure core language, as many EDSLs do.
Other approaches like Velox VM [62] runs general purpose lan-

guages like Scheme on specialized virtual machines for IoT devices.
A separate line of work has been exploring restrictive, Turing-
incomplete, rule-based languages like IoTDSL [2] and CyprIOT
[9].

Juniper [29] is one of the few dedicated languages for IoT but it
exclusively targets Arduino boards. Emfrp [56] and its successor
XFRP [59] are most closely related to the goals of Hailstorm. How-
ever, their model of I/O involves writing glue code in C/C++ and
embedding the pure functional language inside it. Hailstorm has a
more sophisticated I/O integration in the language.
While IoT stands for an umbrella term for a large collection of

software areas, there has been research on declarative languages
for older and specialized application areas like:
• Wireless Sensor Networks (WSNs). There exists EDSLs like
Flask [42] and macroprogramming languages like Regiment
[45] and Kairos [24] for WSNs.
• Real Time Systems. Synchronous language like Esterel [10],
Lustre [26] are a restrictive set of languages designed specif-
ically for real time systems. Further extensions of these lan-
guages like Lucid Synchrone [12], ReactiveML [44], Lucy-n
[43] have attempted to makes them more expressive.

The applications demonstrated in the paper are expressible in
synchronous languages, albeit using a very different interface from
Hailstorm. While languages like Lustre and its extensions are pure

39

they restrict their synchronous calculus to the pure core language
and handle I/O using the old stream based I/O model of Haskell
[48]. Hailstorm explores the design space of pure functional pro-
gramming with the programming model and purity encompassing
the I/O parts as well.
In Lustre, a type system called the clock calculus ensures that

programs can run without any implicit buffering inside the pro-
gram. Strong safety properties such as determinism and absence
of deadlock are ensured at compile time, and programs are com-
piled into statically scheduled executable code. This comes at the
price of reduced flexibility compared to synchronous dataflow-like
systems, particularly in the ease with which bounded buffers can
be introduced and used. Mandel et al have studied n-synchronous
systems in an attempt to bring greater flexibility to synchronous
languages [43]. Hailstorm, in the presence of recursion, is unable to
statically predict memory usage but we plan future work on type
level encoding of buffer sizes to make memory usage more pre-
dictable. Polychronous languages like SIGNAL [8] and FRP libraries
like Rhine [6] provide static guarantees on correctness of systems
with multiple clocks - something that we hope to experiment with
in the future.
6.2 FRP
Hailstorm draws influence from the FRP programming model. Since
the original FRP paper [18], it has seen extensive research over
various formulations like arrowized FRP [46], asynchronous FRP
[16], higher-order FRP [35], monadic stream functions [47].
Various implementations have explored the choice between a

static structure of the dataflow graph (for example Elm [15]) or
dynamic structure, as in most Haskell FRP libraries [3] as well as
FrTime in Racket [13]. The dynamic graph structure makes the
language/library more expressive, allowing programs like sieves
[25].
The higher-order FRP implementation offers almost the local

maxima of tradeoffs, but at the cost of an extremely sophisticated
type system, which infests into the source language, compromising
its simplicity.

The loop# combinator inHailstorm is similar to the 𝜇-combinator
first introduced by Sheeran [57] and to the loopB combinator in
the Causal Commutative Arrows (CCA) paper [40]. CCA presents
a number of mathematical laws on arrows and utilizes them to
compile away intermediate structures and generate efficient FRP
code - a promising avenue for future work in Hailstorm.

FRP has seen adoption in various application areas. Application
areas related to our target areas of IoT applications include robotics
[64], real-time systems [63], vehicle simulations [21] and DSLs
discussed in detail in the previous section.
6.3 Functional I/O
A detailed summary of approaches to functional I/O was presented
by Gordon et al. [22]. Since then monadic I/O [23] has become
the standard norm for I/O in pure functional languages, with the
exception of Clean’s I/O system [1] based on uniqueness types.
More recently, there have been attempts at non mondaic I/O

using a state passing trick in the Universe framework [20]. The
latest work has been on the notion of resource types, proposed by
Winograd-Cort et al. [66], which is explored as a library in Haskell.
In effect, their library uses Haskell’s monadic I/O model; however,

they mention possible future work on designing a dedicated lan-
guage for resource types. Hailstorm explores that possibility by
integrating the idea of resource types natively in a language’s I/O
model. FRPNow! [49] provides an alternate monadic approach to
integrate I/O with FRP.

7 FUTUREWORK
Hailstorm is an ongoing work to run a pure, statically-typed, func-
tional programming language on memory constrained edge devices.
As such, there are a number of open avenues for research:

- Security. We hope to integrate support for Information Flow
Control (IFC) [28] - which uses language based privacy policies
to determine safe dataflow - in Hailstorm. Given that the effectful
combinators are based on the Arrow framework, we expect to build
on two lines of work - (1) integrating IFC with the Arrow typeclass
in Haskell [37] (2) a typeclass based technique to integrate IFC
without modifying the compiler [52] but one which relies on the
purity and static typing of the language.

- Reliability. Hailstorm currently doesn’t provide any fault toler-
ance strategies to mitigate various node/communication failures.
However, being hosted on the Erlang backend, we plan to experi-
ment with distributed versions of the arrow combinators where the
underlying runtime would use supervision trees to handle failures.
This would be a much more invasive change as the synchronous
dataflow model of the language is not practically suitable in a dis-
tributed scenario - leading to more interesting research directions
on macro-programming models [24].

- Memory constrained devices. The evaluation of this paper is car-
ried out on GRiSP boards which are relatively powerful boards. We
are currently working on developing a small virtual machine which
can interpret a functional bytecode instruction set and run on much
more memory constrained devices like STM32 microcontrollers.

8 CONCLUSION
We have presented the design and implementation of Hailstorm, a
domain specific language targeting IoT applications. Our evalua-
tion suggests that Hailstorm can be used to declaratively program
moderately complex applications in a concise and safe manner. In
the future, we hope to use the purity and type system of Hailstorm
to enforce language-based security constraints, as well as to in-
crease its expressiveness to enable the description of interacting
IoT devices in a distributed system.

ACKNOWLEDGMENTS
This work was funded by the Swedish Foundation for Strategic
Research (SSF) under the project Octopi (Ref. RIT17-0023). We
would also like to thank Henrik Nilsson and Joel Svensson for their
valuable feedback on improving our paper.

REFERENCES
[1] Peter Achten and Rinus Plasmeijer. 1995. The ins and outs of Clean I/O. Journal

of Functional Programming 5, 1 (1995), 81–110.
[2] Moussa Amrani, Fabian Gilson, Abdelmounaim Debieche, and Vincent Englebert.

2017. Towards User-centric DSLs to Manage IoT Systems.. In MODELSWARD.
569–576.

[3] Edward Amsden. 2011. A survey of functional reactive programming. Rochester
Institute of Technology (2011).

[4] Joe Armstrong. 1997. The development of Erlang. In Proceedings of the second
ACM SIGPLAN international conference on Functional programming. 196–203.

40 CHAPTER 2. THE HAILSTORM IOT LANGUAGE

[5] Hendrik Pieter Barendregt. 1985. The lambda calculus - its syntax and semantics.
Studies in logic and the foundations of mathematics, Vol. 103. North-Holland.

[6] Manuel Bärenz and Ivan Perez. 2018. Rhine: FRPwith type-level clocks. In Proceed-
ings of the 11th ACM SIGPLAN International Symposium on Haskell, Haskell@ICFP
2018, St. Louis, MO, USA, September 27-17, 2018, Nicolas Wu (Ed.). ACM, 145–157.
https://doi.org/10.1145/3242744.3242757

[7] Iulia Bastys, Musard Balliu, and Andrei Sabelfeld. 2018. If this then what? Con-
trolling flows in IoT apps. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. 1102–1119.

[8] Albert Benveniste, Paul Le Guernic, and Christian Jacquemot. 1991. Synchronous
programming with events and relations: the SIGNAL language and its semantics.
Science of computer programming 16, 2 (1991), 103–149.

[9] Imad Berrouyne, Mehdi Adda, Jean-Marie Mottu, Jean-Claude Royer, and Mas-
simo Tisi. 2019. CyprIoT: framework formodelling and controlling network-based
IoT applications. In Proceedings of the 34th ACM/SIGAPP Symposium on Applied
Computing. 832–841.

[10] Gérard Berry and Georges Gonthier. 1992. The Esterel synchronous programming
language: Design, semantics, implementation. Science of computer programming
19, 2 (1992), 87–152.

[11] Ben Calus, Bob Reynders, Dominique Devriese, Job Noorman, and Frank Piessens.
2017. FRP IoT modules as a Scala DSL. In Proceedings of the 4th ACM SIGPLAN
International Workshop on Reactive and Event-Based Languages and Systems. 15–
20.

[12] Paul Caspi, Grégoire Hamon, and Marc Pouzet. 2008. Synchronous Functional
Programming: The Lucid Synchrone Experiment. Real-Time Systems: Description
and Verification Techniques: Theory and Tools. Hermes (2008).

[13] Gregory H Cooper and Shriram Krishnamurthi. 2006. Embedding dynamic
dataflow in a call-by-value language. In European Symposium on Programming.
Springer, 294–308.

[14] Antony Courtney, Henrik Nilsson, and John Peterson. 2003. The yampa arcade.
In Proceedings of the 2003 ACM SIGPLAN workshop on Haskell. 7–18.

[15] Evan Czaplicki. 2012. Elm: Concurrent Frp for Functional GUIs. Senior thesis,
Harvard University (2012).

[16] Evan Czaplicki and Stephen Chong. 2013. Asynchronous functional reactive
programming for GUIs. ACM SIGPLAN Notices 48, 6 (2013), 411–422.

[17] Zakir Durumeric, Frank Li, James Kasten, Johanna Amann, Jethro Beekman,
Mathias Payer, Nicolas Weaver, David Adrian, Vern Paxson, Michael Bailey, et al.
2014. The matter of heartbleed. In Proceedings of the 2014 conference on internet
measurement conference. 475–488.

[18] Conal Elliott and Paul Hudak. 1997. Functional reactive animation. In Proceedings
of the second ACM SIGPLAN international conference on Functional programming.
263–273.

[19] Conal M Elliott. 2009. Push-pull functional reactive programming. In Proceedings
of the 2nd ACM SIGPLAN symposium on Haskell. 25–36.

[20] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishna-
murthi. 2009. A functional I/O system or, fun for freshman kids. In Proceeding of
the 14th ACM SIGPLAN international conference on Functional programming, ICFP
2009, Edinburgh, Scotland, UK, August 31 - September 2, 2009, Graham Hutton and
Andrew P. Tolmach (Eds.). ACM, 47–58. https://doi.org/10.1145/1596550.1596561

[21] Bernd Finkbeiner, Felix Klein, Ruzica Piskac, and Mark Santolucito. 2017. Vehicle
Platooning Simulations with Functional Reactive Programming. In Proceedings
of the 1st International Workshop on Safe Control of Connected and Autonomous
Vehicles. 43–47.

[22] Andrew Donald Gordon. 1992. Functional programming and input/output. Ph.D.
Dissertation. University of Cambridge, UK. http://ethos.bl.uk/OrderDetails.do?
uin=uk.bl.ethos.259479

[23] Andrew D Gordon and Kevin Hammond. 1995. Monadic I/O in Haskell 1.3. In
Proceedings of the haskell Workshop. 50–69.

[24] Ramakrishna Gummadi, Omprakash Gnawali, and Ramesh Govindan. 2005.
Macro-programming wireless sensor networks using Kairos. In International
Conference on Distributed Computing in Sensor Systems. Springer, 126–140.

[25] Heine Halberstam and Hans Egon Richert. 2013. Sieve methods. Courier Corpo-
ration.

[26] Nicholas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. 1991. The
synchronous data flow programming language LUSTRE. Proc. IEEE 79, 9 (1991),
1305–1320.

[27] Eric Haugh and Matt Bishop. 2003. Testing C Programs for Buffer Over-
flow Vulnerabilities. In Proceedings of the Network and Distributed System Se-
curity Symposium, NDSS 2003, San Diego, California, USA. The Internet Soci-
ety. https://www.ndss-symposium.org/ndss2003/testing-c-programs-buffer-
overflow-vulnerabilities/

[28] Daniel Hedin and Andrei Sabelfeld. 2012. A Perspective on Information-Flow
Control. Software safety and security 33 (2012), 319–347.

[29] Caleb Helbling and Samuel Z Guyer. 2016. Juniper: a functional reactive program-
ming language for the Arduino. In Proceedings of the 4th International Workshop
on Functional Art, Music, Modelling, and Design. 8–16.

[30] Bernard Houssais. 2002. The synchronous programming language SIGNAL: A
tutorial. IRISA, April (2002).

[31] John Hughes. 2000. Generalising monads to arrows. Science of computer pro-
gramming 37, 1-3 (2000), 67–111.

[32] Thomas Johnsson. 1985. Lambda lifting: Transforming programs to recursive
equations. In Conference on Functional programming languages and computer
architecture. Springer, 190–203.

[33] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. 1993. Partial evaluation and
automatic program generation. Prentice Hall.

[34] Simon Peyton Jones and Simon Marlow. 2002. Secrets of the glasgow haskell
compiler inliner. Journal of Functional Programming 12, 4-5 (2002), 393–434.

[35] Neelakantan R Krishnaswami. 2013. Higher-order functional reactive program-
ming without spacetime leaks. ACM SIGPLAN Notices 48, 9 (2013), 221–232.

[36] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for
lifelong program analysis & transformation. In International Symposium on Code
Generation and Optimization, 2004. CGO 2004. IEEE, 75–86.

[37] Peng Li and Steve Zdancewic. 2010. Arrows for secure information flow. Theo-
retical computer science 411, 19 (2010), 1974–1994.

[38] Jie Lin, Wei Yu, Nan Zhang, Xinyu Yang, Hanlin Zhang, and Wei Zhao. 2017. A
survey on internet of things: Architecture, enabling technologies, security and
privacy, and applications. IEEE Internet of Things Journal 4, 5 (2017), 1125–1142.

[39] Sam Lindley, Philip Wadler, and Jeremy Yallop. 2010. The arrow calculus. Journal
of Functional Programming 20, 1 (2010), 51–69.

[40] Hai Liu, Eric Cheng, and Paul Hudak. 2009. Causal commutative arrows and
their optimization. ACM Sigplan Notices 44, 9 (2009), 35–46.

[41] Hai Liu and Paul Hudak. 2007. Plugging a space leak with an arrow. Electronic
Notes in Theoretical Computer Science 193 (2007), 29–45.

[42] Geoffrey Mainland, Greg Morrisett, and Matt Welsh. 2008. Flask: Staged func-
tional programming for sensor networks. In Proceedings of the 13th ACM SIGPLAN
international conference on Functional programming. 335–346.

[43] Louis Mandel, Florence Plateau, and Marc Pouzet. 2010. Lucy-n: a n-synchronous
extension of Lustre. In International Conference on Mathematics of Program Con-
struction. Springer, 288–309.

[44] Louis Mandel and Marc Pouzet. 2005. ReactiveML: a reactive extension to ML. In
Proceedings of the 7th ACM SIGPLAN international conference on Principles and
practice of declarative programming. 82–93.

[45] Ryan Newton, Greg Morrisett, and Matt Welsh. 2007. The regiment macropro-
gramming system. In 2007 6th International Symposium on Information Processing
in Sensor Networks. IEEE, 489–498.

[46] Henrik Nilsson, Antony Courtney, and John Peterson. 2002. Functional reactive
programming, continued. In Proceedings of the 2002 ACM SIGPLAN workshop on
Haskell. 51–64.

[47] Ivan Perez, Manuel Bärenz, and Henrik Nilsson. 2016. Functional reactive pro-
gramming, refactored. ACM SIGPLAN Notices 51, 12 (2016), 33–44.

[48] Simon Peyton Jones. 2001. Tackling the awkward squad: monadic input/output,
concurrency, exceptions, and foreign-language calls in Haskell. Engineering
theories of software construction 180 (2001), 47.

[49] Atze van der Ploeg and Koen Claessen. 2015. Practical principled FRP: forget
the past, change the future, FRPNow!. In Proceedings of the 20th ACM SIGPLAN
International Conference on Functional Programming. 302–314.

[50] Qifan Pu, Ganesh Ananthanarayanan, Peter Bodik, Srikanth Kandula, Aditya
Akella, Paramvir Bahl, and Ion Stoica. 2015. Low latency geo-distributed data
analytics. ACM SIGCOMM Computer Communication Review 45, 4 (2015), 421–
434.

[51] John C Reynolds. 1972. Definitional interpreters for higher-order programming
languages. In Proceedings of the ACM annual conference-Volume 2. 717–740.

[52] Alejandro Russo. 2015. Functional pearl: two can keep a secret, if one of them
uses Haskell. ACM SIGPLAN Notices 50, 9 (2015), 280–288.

[53] Philipp Rümmer. 2014 (accessed May 13, 2020). An Introduction to Lus-
tre. http://www.it.uu.se/edu/course/homepage/modbasutv/ht14/Lectures/lustre_
slides_141006.pdf

[54] Andrei Sabelfeld and Andrew C Myers. 2003. Language-based information-flow
security. IEEE Journal on selected areas in communications 21, 1 (2003), 5–19.

[55] Abhiroop Sarkar. 2020. Hailstorm - A Statically-Typed, Purely Functional Lan-
guage for IoT Applications. http://abhiroop.github.io/pubs/hailstorm.pdf. [On-
line; accessed 19-July-2020].

[56] Kensuke Sawada and Takuo Watanabe. 2016. Emfrp: a functional reactive pro-
gramming language for small-scale embedded systems. In Companion Proceedings
of the 15th International Conference on Modularity. 36–44.

[57] Mary Sheeran. 1984. muFP, A Language for VLSI design. In Proceedings of the
1984 ACM Symposium on LISP and functional programming. 104–112.

[58] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. 2016. Edge
computing: Vision and challenges. IEEE internet of things journal 3, 5 (2016),
637–646.

[59] Kazuhiro Shibanai and Takuo Watanabe. 2018. Distributed functional reactive
programming on actor-based runtime. In Proceedings of the 8th ACM SIGPLAN
InternationalWorkshop on Programming Based on Actors, Agents, and Decentralized
Control. 13–22.

[60] Peer Stritzinger. (accessed May 13, 2020). GRiSP embedded system boards. https:
//www.grisp.org/

41

[61] Mads Tofte and Jean-Pierre Talpin. 1997. Region-based memory management.
Information and computation 132, 2 (1997), 109–176.

[62] Nicolas Tsiftes and Thiemo Voigt. 2018. Velox VM: A safe execution environment
for resource-constrained IoT applications. Journal of Network and Computer
Applications 118 (2018), 61–73.

[63] ZhanyongWan, Walid Taha, and Paul Hudak. 2001. Real-time FRP. In Proceedings
of the sixth ACM SIGPLAN international conference on Functional programming.
146–156.

[64] Zhanyong Wan, Walid Taha, and Paul Hudak. 2002. Event-driven FRP. In In-
ternational Symposium on Practical Aspects of Declarative Languages. Springer,
155–172.

[65] Geoffrey Werner-Allen, Jeff Johnson, Mario Ruiz, Jonathan Lees, and Matt Welsh.
2005. Monitoring volcanic eruptions with a wireless sensor network. In Proceeed-
ings of the Second European Workshop on Wireless Sensor Networks, 2005. IEEE,
108–120.

[66] Daniel Winograd-Cort, Hai Liu, and Paul Hudak. 2012. Virtualizing real-world
objects in FRP. In International Symposium on Practical Aspects of Declarative
Languages. Springer, 227–241.

42 CHAPTER 2. THE HAILSTORM IOT LANGUAGE

PART 2

43

Chapter 3

Higher-Order Concurrency
for Microcontrollers

44

Higher-Order Concurrency for Microcontrollers
Abhiroop Sarkar
Robert Krook

Bo Joel Svensson
Mary Sheeran

Chalmers University
Gothenburg, Sweden

{sarkara,krookr,joels,mary.sheeran}@chalmers.se

Abstract
Programming microcontrollers involves low level interfac-
ing with hardware and peripherals that are concurrent and
reactive. Such programs are typically written in a mixture
of C and assembly using concurrent language extensions
(like FreeRTOS tasks and semaphores), resulting in unsafe,
callback-driven, error-prone and difficult-to-maintain code.
We address this challenge by introducing SenseVM - a

bytecode-interpreted virtual machine that provides a mes-
sage passing based higher-order concurrency model, origi-
nally introduced by Reppy, for microcontroller programming.
This model treats synchronous operations as first-class val-
ues (called Events) akin to the treatment of first-class func-
tions in functional languages. This primarily allows the pro-
grammer to compose and tailor their own concurrency ab-
stractions and, additionally, abstracts away unsafe memory
operations, common in shared-memory concurrency models,
thereby making microcontroller programs safer, composable
and easier-to-maintain.

Our VM is made portable via a low-level bridge interface,
built atop the embedded OS - Zephyr. The bridge is imple-
mented by all drivers and designed such that programming
in response to a software message or a hardware interrupt
remains uniform and indistinguishable. In this paper we
demonstrate the features of our VM through an example,
written in a Caml-like functional language, running on the
nRF52840 and STM32F4 microcontrollers.

CCS Concepts: • Software and its engineering→ Con-
current programming languages;Runtime environments;
Functional languages; Interpreters.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
MPLR ’21, September 29–30, 2021, Münster, Germany
© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8675-3/21/09. . . $15.00
https://doi.org/10.1145/3475738.3480716

Keywords: concurrency, virtual machine, microcontrollers,
functional programming

ACM Reference Format:
Abhiroop Sarkar, Robert Krook, Bo Joel Svensson, andMary Sheeran.
2021. Higher-Order Concurrency for Microcontrollers. In Proceed-
ings of the 18th ACM SIGPLAN International Conference on Managed
Programming Languages and Runtimes (MPLR ’21), September 29–
30, 2021, Münster, Germany. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3475738.3480716

1 Introduction
Microcontrollers are ubiquitous in embedded systems and
IoT applications. These applications, like robot controllers,
cars, industrial machinery, are inherently concurrent and
event-driven (termed reactive in more recent literature). A
2011 poll[26] conducted among embedded systems devel-
opers found C, C++ and assembly to be the most popular
choices for programming such reactive applications.
The popularity of the C family can be attributed to its

fine-grained control over memory layout and management.
Also, C compilers are extremely portable across a diverse
set of microcontrollers while offering low-level control over
hardware peripherals. However, C not being an innately con-
current language, embedded OSes like FreeRTOS and Zephyr
provide their own shared memory concurrency abstractions
like threads, semaphores, mutexes etc [32–34]. Additionally,
the event-driven driver interfaces in such OSes tend to have
APIs that look like the following:
int gpio_pin_interrupt_configure(const struct device *port

, gpio_pin_t pin
, gpio_flags_t flags);

void gpio_init_callback(struct gpio_callback *callback
, gpio_callback_handler_t handler
, gpio_port_pins_t pin_mask);

int gpio_add_callback(const struct device *port
, struct gpio_callback *callback);

This combination of programming in a memory-unsafe
language, like C, callback-based driver APIs and
shared-memory concurrency primitives leads to error-prone,
difficult-to-maintain and unsafe programs. Moreover, pro-
grams also end up being very difficult to port to other mi-
crocontroller boards and follow intricate locking protocols

45

MPLR ’21, September 29–30, 2021, Münster, Germany Abhiroop Sarkar, Robert Krook, Bo Joel Svensson, Mary Sheeran

and complex state machines to deal with the concurrent and
reactive nature of the applications.
Recently, there has been a surge in dynamic-language-

based runtime environments like MicroPython [9] and Es-
pruino [31] on microcontrollers. While these languages ab-
stract away the unsafe memory management of the C family,
neither of them is inherently concurrent. Programming with
the hardware peripherals in MicroPython has the following
form:
def callback(x):
#...callback body with nested callbacks...
extint = pyb.ExtInt(pin, pyb.ExtInt.IRQ_FALLING

, pyb.Pin.PULL_UP, callback)
ExtInt.enable()

The above is plainly a wrapper over the original C API and is
prone to suffer from the additional and accidental complex-
ity of nested callback programming, colloquially termed as
callback-hell[18].

Contributions. In this paper we simplify the handling
of callback-driven APIs, discussed above, by introducing
a bytecode-interpreted virtual machine, SenseVM1, which
models all hardware and I/O interactions via a message-
passing interface. We enumerate the practical contributions
of SenseVM below:

1. Higher-order concurrency. We provide, to the best
of our knowledge, the first implementation of the
higher-order concurrency model [20] for program-
mingmicrocontrollers. This model allows the introduc-
tion of first class values, called Events, for representing
synchronous operations and provides combinators to
compose more complex Event trees, which are useful
for control-flow heavy programs, common in micro-
controllers. We briefly summarize the model in Section
2.1 and describe implementation details in Section 3.

2. Message-passing based I/O. Noting that complex
state machines and callback-hell arises from the inter-
twined nature of concurrency and callback-based I/O,
we mitigate the issues by unifying concurrency with
I/O. As a result, programming in response to a hard-
ware interrupt or any other I/O message in SenseVM
remains indistinguishable from responding to a soft-
ware message. Moreover, owing to the higher-order
concurrency model, the programs do not reduce to a
chain of switch-casing of message contents, common
in other message passing languages like Erlang. We
explain implementation details of the message passing
(Section 3.2), show a sample program (Section 2.3) and
evaluate the performance metrics of this I/O model
(Section 4).

3. Portability. Portability amongmicrocontroller boards
is challenging, as a consequence of the diverse set of

1https://github.com/svenssonjoel/Sense-VM

peripherals and hardware interfaces available. To ad-
dress this, SenseVM provides a low-level bridge inter-
face written in C99 (described in Section 3.3) which
provides a common API which can be implemented by
various synchronous and asynchronous drivers. Once
drivers of different boards implement this interface,
programs can be trivially ported between them as we
demonstrate by running the same, unaltered program
on the nRF52840 and STM32F4 based boards.

2 Programming on SenseVM
To demonstrate programming on top of the SenseVM, we
will use an eagerly-evaluated, statically-typed, functional lan-
guage which extends the polymorphic lambda calculus with
let and letrec expressions similar to Caml [16]. Unlike
Caml, it lacks the mutable ref type and does all I/O oper-
ations via the message-passing interface of the VM. Type
declarations and signatures in our language are syntactically
similar to those of Haskell [14].

The message-passing interface of SenseVM is exposed via
runtime supplied functions. It is synchronous in nature and
all communications happen over typed channels. In a Haskell-
like notation, the general type signature of message sending
and receiving over channels could be written:
sendMsg : Channel a -> a -> ()
recvMsg : Channel a -> a
-- a denotes any generic type like Int, Bool etc;
-- () denotes the "void" type

However, our VM implements an extension of the above
known as higher-order concurrency [20]. We describe the
differences and their implications on the programmingmodel
in the following section.

2.1 Higher-Order Concurrency
The central idea of higher-order concurrency is to separate
the act of synchronous communication into two steps -

1. Expressing the intent of communication
2. Synchronisation between the sender and the receiver

The first step above produces first-class values called Events,
which are concrete runtime values, provided by the SenseVM.
The second step, synchronisation, is expressed using an op-
eration called sync. Now we can write the type signature of
message passing in our VM as:
send : Channel a -> a -> Event ()
recv : Channel a -> Event a
sync : Event a -> a

Intuitively, we can draw an equivalence between general
message passing and higher-order concurrency based mes-
sage passing, using function composition, like the following:
sync . send ≡ sendMsg
sync . recv ≡ recvMsg

46 CHAPTER 3. HIGHER-ORDER CONCURRENCY FOR MICROCONTROLLERS

Higher-Order Concurrency for Microcontrollers MPLR ’21, September 29–30, 2021, Münster, Germany

The above treatment of "Events as values" is analogous to
the treatment of "functions as values" in functional program-
ming. In a similar spirit as higher-order functions, our VM
provides Event based combinators for further composition
of trees of Events:
choose : Event a -> Event a -> Event a
wrap : Event a -> (a -> b) -> Event b

The choose operator represents the standard selective com-
munication mechanism, necessary for threads to communi-
cate with multiple partners, found in CSP [12]. The wrap
combinator is used to run post-synchronisation operations.
wrap ev f can be read as - "post synchronisation of the
event ev, apply the function f to the result".
Reppy draws parallels between an Event and its associ-

ated combinators with higher-order functions [21], using
the following table:

Property Function values Event values
Type constructor -> event
Introduction 𝜆 - abstraction receive

send
etc.

Elimination application sync
Combinators composition choose

map wrap
etc. etc.

SenseVMprovides other combinators like spawn for spawn-
ing a lightweight thread and channel for creating a typed
channel:
spawn : (() -> ()) -> ThreadId
channel : () -> Channel a

Next we discuss the message-passing API for handling I/O.

2.2 I/O in SenseVM
The runtime APIs, introduced in the previous section, are use-
ful for implementing a software message-passing framework.
However, to model external hardware events, like interrupts,
we introduce another runtime function:
spawnExternal : Channel a -> Int -> ThreadId

This function connects the various peripherals on a micro-
controller board with the running program, via typed chan-
nels. The second argument to spawnExternal is a driver-
specific identifier to identify the driver that we wish to com-
municate with. Currently in our runtime, we use a monoton-
ically increasing function to number all the drivers starting
from 0; the programmer uses this number in spawnExternal.
However, as future work, we are building a tool that will
parse a configuration file describing the drivers present on a
board, number the drivers, inform the VM about the number-
ing and then generate a frontend program like the following:

data Driver = LED Int | Button Int | ...

led0 = LED 0
led1 = LED 1
but0 = Button 2
but1 = Button 3

--Revised `spawnExternal` type signature will be
spawnExternal : Channel a -> Driver -> ThreadId

In the rest of the paper, we will be referring to the revised
spawnExternal function for clarity. Now we can express a
SenseVM program that listens to an interrupt raised by a
button press below:
main =

let bchan = channel() in
let _ = spawnExternal bchan but0 in
sync (recv bchan)

The recv is a blocking receive and if there are other pro-
cesses that can be scheduled while this part of the program
is blocked, the runtime will schedule them. In the absence of
any other processes, the runtime will relinquish its control
to the underlying OS (Zephyr OS) and will never poll for
the button press. The SenseVM runtime is geared towards
IoT applications where microcontrollers are predominantly
asleep and are woken up reactively by hardware interrupts.
In the following section, we demonstrate a more complete
program running on our VM.

2.3 Button-Blinky
Next we portably run a program in both the nRF52840 and
STM32F4 microcontroller based boards. The program indefi-
nitely waits for a button press on button 0 and on receiving
an ON signal, sends an ON signal to LED number 0. Upon the
button release, it receives an OFF signal and sends the same
to the LED. The LED stays ON as long as the button is pressed.
This program, expressed in C and hosted in Zephyr, is

about 127 lines of code (see [7]) involving setup, initialisa-
tion, callback registration and other control logic. The same
program expressed on top of the SenseVM is:
1 bchan = channel ()
2 lchan = channel ()
3

4 main =
5 let _ = spawnExternal bchan but0 in
6 let _ = spawnExternal lchan led0 in
7 buttonBlinky
8

9 buttonBlinky =
10 let _ = sync (wrap (recv bchan) blinkled) in
11 buttonBlinky
12 where
13 blinkled i = sync (send lchan i)

47

MPLR ’21, September 29–30, 2021, Münster, Germany Abhiroop Sarkar, Robert Krook, Bo Joel Svensson, Mary Sheeran

In the above program, we create a channel per driver (Line
no. 1 and 2) and instruct the button driver, via spawnExternal,
to send any hardware interrupts to the registered channel
- bchan (Line no. 5). Upon receiving an interrupt, we run a
post-synchronisation action using wrap (Line no. 10), which
sends the value sent by the interrupt to the LED driver using
lchan (Line no. 13). It recursively calls itself to continue run-
ning the program infinitely (Line no. 11). There is a notable
absence of callbacks in the above program.

3 Design and Implementation
3.1 System Overview
SenseVM, including its execution unit, is an implementation
of the Categorical Abstract Machine [5] (CAM), as explained
by Hinze [11], but has been augmented with a set of opera-
tion codes for the higher-order concurrency extensions. We
show the compilation and runtime pipeline of the VM in
Figure 1 below:

Figure 1. The SenseVM compilation & runtime pipeline

Frontend. The frontend supports a polymorphic and stati-
cally typed functional language whose types are monomor-
phised at compile time. It supports some optimisation passes
like lambda-lifting to reduce heap allocation.

Middleware. The frontend’s desugared intermediate repre-
sentation is compiled to an untyped lambda calculus repre-
sentation. This representation is further optimised by gen-
eration of specialised bytecodes for an operational notion
called r-free variables, as described by Hinze[11], to further
reduce heap allocation. The generated SenseVM bytecode op-
erates on a stack machine with a single environment register.
The bytecode is then further subjected to peephole optimi-
sations like 𝛽−reduction and last-call optimisation[11] (a
generalisation of tail-call elimination).
Backend. The SenseVM back-end, or virtual machine, is

split into a high-level part and a low-level part. Currently
the low-level part is implemented on top of Zephyr and is
described in more detail in Section 3.3. The interface between
the low-level, Zephyr based, part of the back-end and the
high-level has been kept minimal to enable plugging in other
embedded OSes like FreeRTOS.

The high-level part of the back-end consists of a fixed
number of contexts. A context is a lightweight thread com-
prising of (1) an environment register, (2) a stack and (3)
a program counter. The context switching is cooperatively
handled by the VM scheduler. The high-level part of the VM
also contains a garbage-collected heap where all compound
CAM values (like tuples) are allocated.
The VM uses a mark-and-sweep garbage collection al-

gorithm that is a combination of the Hughes lazy sweep
algorithm and the Deutsch-Schorr-Waite pointer-reversing
marking algorithm [13, 15, 23]. As future work, we intend
to investigate more static memory management schemes
like regions [27] and also real-time GC algorithms[17]. The
following section explains the message-passing based con-
currency aspects of the VM.

3.2 Synchronous Message Passing
In the higher-order concurrency model of synchronous mes-
sage passing, we separate the synchronisation from the de-
scription of message passing. By doing this, we introduce an
intermediate value type known as an Event.

3.2.1 Event. Reppy calls send and recv operations base-
event constructors. Operations like choose and wrap are the
higher-order operators used for composing the base events.
An Event is a concrete runtime value represented in the
SenseVM heap as a nested tuple. Figure 2 shows the repre-
sentation of an Event on the heap.

Figure 2. The heap structure of an Event

An Event is represented as a linked list of base events.
We represent the linked list as a chain of tuples where the
second element points to the rest of list, and the first element
points to another nested tuple, which encodes - (1) message
content, (2) channel number, (3) event type (send or recv)
and (4) post-synchronisation function to be applied.
A composition operation like choose e1 e2 simply ap-

pends two lists - e1 and e2. We can further compose choose
using fold operations2to allow it to accept a list of events
and build complex event trees, along with wrap, as shown
in the following program. However it is always possible to
rewrite this tree at compile time, using function composition,
2https://hackage.haskell.org/package/base-
4.15.0.0/docs/Prelude.html#v:foldr1

48 CHAPTER 3. HIGHER-ORDER CONCURRENCY FOR MICROCONTROLLERS

Higher-Order Concurrency for Microcontrollers MPLR ’21, September 29–30, 2021, Münster, Germany

to produce the canonical representation of events as a linked
list rather than a tree.
choose' : [Event a] -> Event a
choose' = foldr1 choose

choose' [wrap bev1 w1,
wrap (choose' [wrap bev2 w2,

wrap bev3 w3]) w4]
-- Rewritten to
choose' [wrap bev1 w1,

wrap bev2 (w4 . w2),
wrap bev3 (w4 . w3)]

3.2.2 Synchronisation. The sync or synchronisation op-
eration is one of the more intricate aspects of the SenseVM
runtime and we describe the algorithm in pseudocode below:

Function 𝑠𝑦𝑛𝑐 (𝑒𝑣𝑒𝑛𝑡𝐿𝑖𝑠𝑡)
𝑒𝑣 ← 𝑓 𝑖𝑛𝑑𝑆𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑠𝑎𝑏𝑙𝑒𝐸𝑣𝑒𝑛𝑡 (𝑒𝑣𝑒𝑛𝑡𝐿𝑖𝑠𝑡)
if 𝑒𝑣 ≠ ∅ then
𝑠𝑦𝑛𝑐𝑁𝑜𝑤 (𝑒𝑣)

else
𝑏𝑙𝑜𝑐𝑘 (𝑒𝑣𝑒𝑛𝑡𝐿𝑖𝑠𝑡)
𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝑁𝑒𝑤𝑇ℎ𝑟𝑒𝑎𝑑 ()

end if
EndFunction

The above gives a bird’s-eye view of the major operations
involved in sync. To understand the findSynchronisableEvent
function, we should understand the structure of a channel,
that contains a send and a receive queue. These queues are
used not to hold the messages but to track which threads are
interested in sending or receiving on the respective channel.
Now we can describe findSynchronisableEvent :

Function 𝑓 𝑖𝑛𝑑𝑆𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑠𝑎𝑏𝑙𝑒𝐸𝑣𝑒𝑛𝑡 (𝑒𝑣𝑒𝑛𝑡𝐿𝑖𝑠𝑡)
for all 𝑒 ∈ 𝑒𝑣𝑒𝑛𝑡𝐿𝑖𝑠𝑡 do
if 𝑒.𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑁𝑜 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑛𝑔 𝑤𝑖𝑡ℎ 𝑑𝑟𝑖𝑣𝑒𝑟 then

if 𝑙𝑙𝐵𝑟𝑖𝑑𝑔𝑒.𝑑𝑟𝑖𝑣𝑒𝑟 𝑟𝑒𝑎𝑑𝑎𝑏𝑙𝑒/𝑤𝑟𝑖𝑡𝑒𝑎𝑏𝑙𝑒? then
return 𝑒

end if
else

if 𝑒.𝑏𝑎𝑠𝑒𝐸𝑣𝑒𝑛𝑡𝑇𝑦𝑝𝑒 == 𝑆𝐸𝑁𝐷 then
if ¬𝑖𝑠𝐸𝑚𝑝𝑡𝑦 (𝑒.𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑁𝑜.𝑟𝑒𝑐𝑣𝑞) then
return 𝑒

end if
else if 𝑒.𝑏𝑎𝑠𝑒𝐸𝑣𝑒𝑛𝑡𝑇𝑦𝑝𝑒 == 𝑅𝐸𝐶𝑉 then

if ¬𝑖𝑠𝐸𝑚𝑝𝑡𝑦 (𝑒.𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑁𝑜.𝑠𝑒𝑛𝑑𝑞) then
return 𝑒

end if
end if

end if
end for
return ∅
EndFunction

When no synchronisable event is found we use block :

Function 𝑏𝑙𝑜𝑐𝑘 (𝑒𝑣𝑒𝑛𝑡𝐿𝑖𝑠𝑡)
for all 𝑒 ∈ 𝑒𝑣𝑒𝑛𝑡𝐿𝑖𝑠𝑡 do

if 𝑒.𝑏𝑎𝑠𝑒𝐸𝑣𝑒𝑛𝑡𝑇𝑦𝑝𝑒 == 𝑆𝐸𝑁𝐷 then
𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑒.𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑁𝑜.𝑠𝑒𝑛𝑑𝑞)

else if 𝑒.𝑏𝑎𝑠𝑒𝐸𝑣𝑒𝑛𝑡𝑇𝑦𝑝𝑒 == 𝑅𝐸𝐶𝑉 then
𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑒.𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑁𝑜.𝑟𝑒𝑐𝑣𝑞)

end if
end for
EndFunction

After the call to block, we call dispatch described below:
Function 𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝑁𝑒𝑤𝑇ℎ𝑟𝑒𝑎𝑑 ()
if 𝑟𝑒𝑎𝑑𝑦𝑄 ≠ ∅ then
𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑 ← 𝑑𝑒𝑞𝑢𝑒𝑢𝑒 (𝑟𝑒𝑎𝑑𝑦𝑄)
currentThread = threadId

else
relinquish control to Zephyr

end if
EndFunction

On receiving a synchronisable event, we apply syncNow :
Function 𝑠𝑦𝑛𝑐𝑁𝑜𝑤 (𝑒𝑣𝑒𝑛𝑡)
if ¬ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒 (𝑒𝑣𝑒𝑛𝑡) then

if 𝑒𝑣𝑒𝑛𝑡 .𝑏𝑎𝑠𝑒𝐸𝑣𝑒𝑛𝑡𝑇𝑦𝑝𝑒 == 𝑆𝐸𝑁𝐷 then
threadIdR← dequeue(event.channelNo.recvq)
recvEvt← threadIdR.envRegister
event.Message→ threadIdR.envRegister
threadIdR.programCounter→ recvEvt.wrapFunc

currentThread.programCounter→ event.wrapFunc

sendingThread = currentThread
currentThread = threadIdR
schedule(sendingThread)

else if 𝑒𝑣𝑒𝑛𝑡 .𝑏𝑎𝑠𝑒𝐸𝑣𝑒𝑛𝑡𝑇𝑦𝑝𝑒 == 𝑅𝐸𝐶𝑉 then
threadIdS← dequeue(event.channelNo.sendq)
sendEvt← threadIdS.envRegister
sendEvent.Message→ currentThread.envRegister

threadIdS.programCounter→ sendEvt.wrapFunc

currentThread.programCounter→ event.wrapFunc

schedule(threadIdS)
end if

else if ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒 (𝑒𝑣𝑒𝑛𝑡) then
if 𝑒𝑣𝑒𝑛𝑡 .𝑏𝑎𝑠𝑒𝐸𝑣𝑒𝑛𝑡𝑇𝑦𝑝𝑒 == 𝑆𝐸𝑁𝐷 then
llBridge.write(event.Message)→ driver

else if 𝑒𝑣𝑒𝑛𝑡 .𝑏𝑎𝑠𝑒𝐸𝑣𝑒𝑛𝑡𝑇𝑦𝑝𝑒 == 𝑅𝐸𝐶𝑉 then
currentThread.envRegister← llBridge.read(driver)

end if
currentThread.programCounter→ event.wrapFunc

end if
EndFunction

49

MPLR ’21, September 29–30, 2021, Münster, Germany Abhiroop Sarkar, Robert Krook, Bo Joel Svensson, Mary Sheeran

In the case of interrupts that arrive when the SenseVM
runtime has relinquished control to Zephyr, we place the
message on the Zephyr queue and request the scheduler to
wake up, create an event and then call sync on that event. For
events in a choose clause that fail to synchronise, we clear
them from the heap using the dirty-flag technique invented
by Ramsey [19].

3.2.3 Comparison with Actors. In SenseVM, we opt for
a synchronous style of message-passing, as distinct from
the more popular asynchronous style found in actor-based
systems[10]. Our choice is governed by the following:
(1) Asynchronous send (as found in actors) implies the un-
boundedness of an actor mailbox, which is a poor assumption
in memory-constrained microcontrollers. With a bounded
mailbox, actors eventually resort to synchronous send se-
mantics, as found in SenseVM.
(2) Synchronous message passing can emulate buffering by
introducing intermediate processes, which forces the pro-
grammer to think upfront about the cost of buffers.
(3) Acknowledgement becomes an additional, explicit step
in asynchronous communication, leading to code bloat. Ac-
knowledgement is implicit in the synchronous message pass-
ing model and is a practical choice when not communicating
across distributed systems.
(4) Actor based systems (like Medusa [3]) incur the extra
cost of tagging a message to identify which entities have
requested which message. The combination of channels and
synchronous message-passing ensures that an arriving hard-
ware interrupt knows where to send the message, without
any message identification cost.

3.3 Low-Level Bridge
The low-level bridge exists to bridge the divide in abstraction
level from the channel-based communication of SenseVM
to the underlying embedded OS - Zephyr [1]. The main mo-
tivation behind using the Zephyr RTOS as the lowest level
hardware abstraction layer (HAL) for SenseVM is that it
provides a good set of driver abstractions that are portable
between microcontrollers and development boards. Exam-
ples of such drivers include UART, SPI, I2C, buttons and
LEDs and many other peripherals.

A driver can be be either synchronous or asynchronous in
nature. An example of a synchronous driver is an LED that
can be directly read or written. On the other hand, asynchro-
nous peripherals operate using interrupts. An asynchronous
driver interrupt can be signaling, for example, that it has
filled up a buffer in memory using Direct Memory Access
(DMA) that now needs handling, or it could signal a simple
boolean message such as "a button has been pressed".
To accommodate these various types of drivers, the con-

nection between SenseVM and the drivers is made using a
datatype called ll_driver_t, which describes an interface
that each low-level (platform and HAL dependent) driver

should implement. The interface supports the following op-
erations:
uint32_t ll_read(ll_driver_t *drv,

uint8_t *data,
uint32_t data_size);

uint32_t ll_write(ll_driver_t *drv,
uint8_t *data,
uint32_t data_size);

uint32_t ll_data_readable(ll_driver_t *drv);
uint32_t ll_data_writeable(ll_driver_t *drv);
bool ll_is_synchronous(ll_driver_t *drv);

For a synchronous driver such as the LED, ll_read and
ll_write can be called at any time to read or write data
from the driver. Likewise, the ll_data_readable and
ll_data_writeable always returns a value greater than
zero in the synchronous case. The ll_is_synchronous func-
tion is used by the SenseVM runtime to distinguish asynchro-
nous, interrupt-driven drivers from the synchronous ones
and handle them accordingly.
The asynchronous case is more interesting. Say that the

program wants to write a value to an asynchronous driver,
for example a UART (serial communication). The low-level
UART implementation may be using a buffer that can be full
and ll_data_writeable will in this case return zero. The
SenseVM task that tried to write data will now block. Tasks
that are blocked on either asynchronous read or write have
to be woken up when the lower-level driver implementation
has produced or is ready to receive data. These state changes
are usually signaled using interrupts.

The interrupt service routines (ISRs) associated with asyn-
chronous drivers talk to the SenseVM RTS using a message
queue and a driver message type called ll_driver_msg_t
akin to the Medusa system [3]. A simple event such as "a
button has been pressed" can be fully represented in the mes-
sage, but if the message signals that a larger buffer is filled
with data that needs processing, this data can be accessed
through the ll_read/write interface.
The SenseVM scheduler runs within a Zephyr thread.

This thread is the owner of the message queue to which all
the drivers are sending messages. When the Zephyr thread
starts the SenseVM scheduler, it passes along a pointer to a
read_message function that reads a message from the mes-
sage queue or blocks if the queue is empty. Thus, all code
that relies on Zephyr is confined to the low-level drivers and
to the thread that runs the scheduler.

4 Evaluation
Evaluations are run on the STM32F4 microcontroller with
a Cortex M4 core at 168MHz (STM32F407G-DISC1) and an
nRF52840 microcontroller with an 80MHz Cortex M4 core
(UBLOX BMD340). We should point out that the button-
blinky program runs portably on both of these boards with
no change in the code required.

50 CHAPTER 3. HIGHER-ORDER CONCURRENCY FOR MICROCONTROLLERS

Higher-Order Concurrency for Microcontrollers MPLR ’21, September 29–30, 2021, Münster, Germany

4.1 Power Consumption
Figure 3 shows the power consumption of the button-blinky
program measured in the nRF52 board for (i) a polling im-
plementation of the program written in C, (ii) the interrupt-
based implementation written in C [7] and (iii) the SenseVM
implementation. The measurements were obtained using a
Ruideng UM25C ammeter where the values provided are
momentary and read after they stabilised.

Figure 3. Power consumption with LED OFF and ON in mW

The figure shows that the polling implementation con-
sumes up to four timesmore powerwhen the LED is switched
OFF and up to twice as much power when the LED is ON
compared to the SenseVM implementation. The C interrupt
based implementation and the SenseVM program have iden-
tical power usage. However, the C program is 127 lines of
callback-based code compared to the 13 line SenseVM pro-
gram shown in Section 2.3.

4.2 Response Time
Table 1 shows two different implementations of button-blinky
written directly in C and Zephyr in comparison to the Sen-
seVM implementation. The values in the table represent the
time it takes from a button being pressed until the associ-
ated LED turns on. The values were obtained using a UNI-T
UTD2102CEX (100MHz, 1GS/s oscilloscope) that has not
been calibrated other than the original factory calibrations.
We elaborate on the oscilloscope measurements in Appendix
A

Table 1. Response time for button-blinky program in 𝜇secs

Zephyr Zephyr (Interrupt based) SenseVM
STM32F4 0.88 9.5 37.7
NRF52 1.9 17.3 61.6

The response time for the polling based implementation is
considerably faster than the rest. This comes at the cost of
being much more power intensive (upto 4 times for this pro-
gram). The SenseVM response time is up to 4 times slower

than the more realistic interrupt based C program. This slow-
down is majorly attributed to two factors i) the interpretation
overhead and ii) the stop-the-world garbage collector. As fu-
ture work, we plan to experiment with various ahead-of-time
and just-in-time compilation strategies to speed up the byte-
code interpretation and thus improve the response times. We
also hope that more incremental, real-time garbage collectors
can further speed up the response times.

4.3 Memory Usage
SenseVM statically allocates the stack, heap, number of chan-
nels, number of threads etc and allows configuration of their
sizes. As a result, when comparing memory usage between
SenseVM and Zephyr, a lot of the memory reported is not
currently being used but statically allocated for potential use
by the VM. We show some memory usage statistics in Table
2.

Table 2. Memory usage of button-blinky in KiB (= 1024
bytes)

Flash RAM
SenseVM 37.4 27.6

Zephyr message queue 16.5 4.55

While obtaining the data in Table 2, SenseVM was config-
ured with a heap of 1024 bytes and 1024 bytes for use by the
stacks of each context. Additionally we set aside 9600 bytes
for channels, of which, only 2 channels (192 bytes) are used
and the remaining 9408 bytes remain unused. The button-
blinky program uses 1 thread, 2 channels and interacts with 2
drivers (LED and button), while in the VM we have statically
allocated space for 4 threads, 100 channels and metadata for
16 drivers. This additional space allocation is done keeping
in mind multi-threaded programs with larger inter-process
networks communicating via several channels using various
drivers.

5 Related Work
Among statically-typed languages, Varoumas et.al [30] pre-
sented a virtual machine that can host the OCaml language
on PIC microcontrollers. They have extended OCaml with a
deterministic model of concurrency - OCaLustre [29]. This
line of work, however, does not mitigate the pain associated
with callback hell, as the concurrency model does not extend
to the interrupts and their handlers. In SenseVM, we unify
the notion of concurrency and I/O (callback-based and oth-
erwise) via message-passing to simplify callback-oriented
programming, prevalent in microcontrollers.
In the dynamically-typed language world there exists

Medusa [3], for programming the TI Stellaris microcon-
trollers, which is much closer to our line of work by unifying
concurrency and I/O. The difference between Medusa and
SenseVM boils down to the comparison between actor based,

51

MPLR ’21, September 29–30, 2021, Münster, Germany Abhiroop Sarkar, Robert Krook, Bo Joel Svensson, Mary Sheeran

asynchronous message passing systems and the synchro-
nous message passing model, which has been discussed in
Section 3.2.3. Moreover, the static typing of our frontend
language enables typed channels to perform static checks on
message contents, done at runtime in Medusa. One should
note, however, that actor based systems excel at distributed
computing - a more failure-prone and harder form of con-
current computing.
Programming environments like VeloxVM [28] focus on

the safety and security of microcontroller programming . We
leave our investigations on the formal safety and security as-
pects of microcontroller programming as future work. There
also exists work to improve the portability, debuggability
and live-code updating capability of microcontrollers using
WebAssembly [25].

Our previous work [22] has attempted to use the Func-
tional Reactive Programming (FRP) paradigm [6] for the
programming of microcontrollers. However, it suffered from
the performance penalties of polling, owing to the pull-based
semantics of FRP, which has been addressed in this higher-
order concurrency model.

The higher-order concurrency model, first introduced by
Reppy [20], has been primarily used for programming GUIs
such as eXene [8]. It has also found application in more ex-
perimental distributed implementations of SML such as DML
[4]. We provide, to the best of our knowledge, the first im-
plementation of the model for natively programming micro-
controllers. In all previous implementations of higher-order
concurrency, external I/O has been represented using stream-
based I/O primitives on top of SML’s standard I/O API [21].
We differ in this aspect by modelling any external I/O device
as a process in itself (connected using spawnExternal) and
communicating via the standard message passing interface,
making the model more uniform.
Regarding portability, there exist JVM implementations

like Jamaica VM [24] for running portable Java code across
various classes of embedded systems. The WebAssembly
project has also spawned sub-projects like the WASM micro-
runtime [2] to allow languages that compile toWebAssembly
to run portably on microcontrollers. It should be pointed out
that while general-purpose languages like Javascript can
execute on ARM architectures by compiling to WebAssem-
bly, it is still the case that neither the language nor the VM
offers any intrinsic model of concurrency unified with I/O,
analogous to the one provided by SenseVM.

6 Conclusion
We have presented SenseVM, a bytecode-interpreted virtual
machine to simplify the concurrent and reactive program-
ming of microcontrollers. We introduce the higher-order
concurrency model to the world of microcontroller program-
ming and show the feasibility of implementing the model by
presenting the power usage, response time measurements

and memory footprint of the VM on an interrupt-driven,
callback based program. We additionally present our VM
to address the portability concerns that plague low-level C
and assembly microcontroller programs. We demonstrate
the portability of our VM by running the same program, un-
changed, on the nRF52840 and STM32F4microcontrollers. In
future work, we hope to experiment with real-time program-
ming on microcontrollers by exploring more deterministic
approaches to memory management like regions and real-
time garbage collectors.

Acknowledgments
This work was funded by the Swedish Foundation for Strate-
gic Research (SSF) under the project Octopi (Ref. RIT17-0023)
and by the Chalmers Gender Initiative for Excellence (Genie).

A Response Time Measurement Data
In the pictures below, the blue line represents the button
and the yellow line represents the LED. The measurement is
taken from the rising edge of the button line, to the rising
edge of the LED while trying to (when possible) cut the slope
of the edge in the middle. All pictures are captured on the
same UNI-T UTD2102CEX (100MHz, 1GS/s oscilloscope).

The oscilloscope used here is not pleasant to gather large
datasets. To the best of our knowledge it does not support a
network connection and API access.
The occurrence of outliers in our measurements is dis-

cussed in the next section. A series of 25 SenseVM button-
blinky response time measurements, filtered from outliers,
were collected on the STM32F4 microcontroller. Out of these
25 measurements 23 were measured at 37.7𝜇s and the other
two came in at 37.4𝜇s and 37.5𝜇s.

B Outliers
While repeatedly running and capturing the response time
of the button-blinky program on the STM32F4, periodical
outliers occur. In a sequence of 108 experiments, 11 showed

Figure 4. STM32F4 Discovery: Zephyr implementation of
button-blinky that constantly polls button and updates LED.

52 CHAPTER 3. HIGHER-ORDER CONCURRENCY FOR MICROCONTROLLERS

Higher-Order Concurrency for Microcontrollers MPLR ’21, September 29–30, 2021, Münster, Germany

Figure 5. STM32F4 Discovery: Zephyr implementation of
button-blinky using interrupt and message queue.

Figure 6. STM32F4 Discovery: SenseVM implementation of
button-blinky.

Figure 7. NRF52: Zephyr implementation of button-blinky
that constantly polls button and updates LED.

an outlier. The occurrence of these anomalies is likely to be
caused by the garbage collector performing a mark phase.
There is also a chance that if a large part of the heap is in
use, the allocation operation becomes expensive as it may
need to search a larger space before finding a free cell using
the lazy sweep algorithm.

The figure below shows a response time of 96𝜇s compared
to the approximately 38𝜇s response time found in most cases.

Figure 8. NRF52: Zephyr implementation of button-blinky
using interrupt and message queue.

Figure 9. NRF52: SenseVM version of button-blinky.

Figure 10. STM32F4 Discovery: Outlier measured while run-
ning SenseVM implementation of button-blinky.

The worst outlier found so far was measured to 106.8𝜇s but
these seem to be rare and most outliers fell somewhat short
of 96𝜇s. As future work better measurement methodology
will be developed and applied. Preferably such a setup should
allow scripting of a large number of automated tests.

References
[1] 2016. Zephyr OS. https://www.zephyrproject.org/

53

MPLR ’21, September 29–30, 2021, Münster, Germany Abhiroop Sarkar, Robert Krook, Bo Joel Svensson, Mary Sheeran

[2] 2019. WAMR - WebAssembly Micro Runtime. https://github.com/
bytecodealliance/wasm-micro-runtime

[3] Thomas W Barr and Scott Rixner. 2014. Medusa: Managing con-
currency and communication in embedded systems. In 2014 USENIX
Annual Technical Conference (USENIX ATC 14). 439–450.

[4] Robert Cooper and Clifford Krumvieda. 1992. Distributed program-
ming with asynchronous ordered channels in distributed ML. In ACM
SIGPLAN Workshop on ML and Its Applications. 134–150.

[5] Guy Cousineau, Pierre-Louis Curien, and Michel Mauny. 1985. The
Categorical Abstract Machine. In Functional Programming Languages
and Computer Architecture, FPCA 1985, Nancy, France, September 16-19,
1985, Proceedings (Lecture Notes in Computer Science, Vol. 201), Jean-
Pierre Jouannaud (Ed.). Springer, 50–64. https://doi.org/10.1007/3-540-
15975-4_29

[6] Conal Elliott and Paul Hudak. 1997. Functional Reactive Animation.
In Proceedings of the 1997 ACM SIGPLAN International Conference on
Functional Programming (ICFP ’97), Amsterdam, The Netherlands, June
9-11, 1997, Simon L. Peyton Jones, Mads Tofte, and A. Michael Berman
(Eds.). ACM, 263–273. https://doi.org/10.1145/258948.258973

[7] Zephyr examples. 2021. Zephyr Button Blinky. https://gist.github.
com/Abhiroop/d83755d7a5703f704fbfb9c3d116d87c

[8] Emden R Gansner and John H Reppy. 1991. eXene. In Third Interna-
tional Workshop on Standard ML, Pittsburgh, PA.

[9] Damien George. 2014. Micropython. https://micropython.org/
[10] Carl Hewitt. 2010. Actor model of computation: scalable robust infor-

mation systems. arXiv preprint arXiv:1008.1459 (2010).
[11] Ralf Hinze. 1993. The Categorical Abstract Machine: Basics and En-

hancements. Technical Report. University of Bonn.
[12] Charles Antony Richard Hoare. 1978. Communicating Sequential

Processes. Commun. ACM 21, 8 (1978), 666–677. https://doi.org/10.
1145/359576.359585

[13] R John M Hughes. 1982. A semi-incremental garbage collection algo-
rithm. Software: Practice and Experience 12, 11 (1982), 1081–1082.

[14] Simon Peyton Jones. 2003. Haskell 98 language and libraries: the revised
report. Cambridge University Press.

[15] Donald Ervin Knuth. 1997. The art of computer programming. Vol. 3.
Pearson Education.

[16] Xavier Leroy. 1997. The Caml Light system release 0.74. URL:
http://caml. inria. fr (1997).

[17] Henry Lieberman and Carl Hewitt. 1983. A Real-Time Garbage Col-
lector Based on the Lifetimes of Objects. Commun. ACM 26, 6 (1983),
419–429. https://doi.org/10.1145/358141.358147

[18] Tommi Mikkonen and Antero Taivalsaari. 2008. Web Applications -
Spaghetti Code for the 21st Century. In Proceedings of the 6th ACIS Inter-
national Conference on Software Engineering Research, Management and
Applications, SERA 2008, 20-22 August 2008, Prague, Czech Republic, Wal-
ter Dosch, Roger Y. Lee, Petr Tuma, and Thierry Coupaye (Eds.). IEEE
Computer Society, 319–328. https://doi.org/10.1109/SERA.2008.16

[19] Norman Ramsey. 1990. Concurrent programming in ML. Technical
Report. Princeton University.

[20] John H Reppy. 1992. Higher-order concurrency. Technical Report.
Cornell University.

[21] JohnHReppy. 1993. ConcurrentML: Design, application and semantics.
In Functional Programming, Concurrency, Simulation and Automated
Reasoning. Springer, 165–198.

[22] Abhiroop Sarkar and Mary Sheeran. 2020. Hailstorm: A Statically-
Typed, Purely Functional Language for IoT Applications. In PPDP ’20:
22nd International Symposium on Principles and Practice of Declarative
Programming, Bologna, Italy, 9-10 September, 2020. ACM, 12:1–12:16.
https://doi.org/10.1145/3414080.3414092

[23] Herbert Schorr and William M. Waite. 1967. An efficient machine-
independent procedure for garbage collection in various list structures.
Commun. ACM 10, 8 (1967), 501–506. https://doi.org/10.1145/363534.
363554

[24] Fridtjof Siebert. 1999. Hard Real-Time Garbage-Collection in the
Jamaica Virtual Machine. In 6th International Workshop on Real-Time
Computing and Applications Symposium (RTCSA ’99), 13-16 December
1999, Hong Kong, China. IEEE Computer Society, 96–102. https://doi.
org/10.1109/RTCSA.1999.811198

[25] Robbert Gurdeep Singh and Christophe Scholliers. 2019. WARDuino:
a dynamic WebAssembly virtual machine for programming micro-
controllers. In Proceedings of the 16th ACM SIGPLAN International
Conference on Managed Programming Languages and Runtimes, MPLR
2019, Athens, Greece, October 21-22, 2019, Antony L. Hosking and Irene
Finocchi (Eds.). ACM, 27–36. https://doi.org/10.1145/3357390.3361029

[26] VDC Research Survey. 2011. Embedded Engineer Survey Re-
sults. https://blog.vdcresearch.com/embedded_sw/2011/06/2011-
embedded-engineer-survey-results-programming-languages-used-
to-develop-software.html

[27] Mads Tofte and Jean-Pierre Talpin. 1997. Region-based Memory Man-
agement. Inf. Comput. 132, 2 (1997), 109–176. https://doi.org/10.1006/
inco.1996.2613

[28] Nicolas Tsiftes and Thiemo Voigt. 2018. Velox VM: A safe execution en-
vironment for resource-constrained IoT applications. J. Netw. Comput.
Appl. 118 (2018), 61–73. https://doi.org/10.1016/j.jnca.2018.06.001

[29] Steven Varoumas, Benoît Vaugon, and Emmanuel Chailloux. 2016.
Concurrent Programming of Microcontrollers, a Virtual Machine Ap-
proach. In 8th European Congress on Embedded Real Time Software and
Systems (ERTS 2016). 711–720.

[30] Steven Varoumas, Benoît Vaugon, and Emmanuel Chailloux. 2018. A
Generic Virtual Machine Approach for ProgrammingMicrocontrollers:
the OMicroB Project. In 9th European Congress on Embedded Real Time
Software and Systems (ERTS 2018).

[31] Gordon Williams. 2012. Espruino. http://www.espruino.com/
[32] Zephyr. 2016. Zephyr Mutex API. https://docs.zephyrproject.org/

apidoc/latest/group__mutex__apis.html
[33] Zephyr. 2016. Zephyr Semaphore API. https://docs.zephyrproject.org/

apidoc/latest/group__semaphore__apis.html
[34] Zephyr. 2016. Zephyr Semaphore API. https://docs.zephyrproject.org/

apidoc/latest/group__thread__apis.html

54 CHAPTER 3. HIGHER-ORDER CONCURRENCY FOR MICROCONTROLLERS

Chapter 4

Synchron - An API and
Runtime for Embedded
Systems

55

Synchron - An API and Runtime for Embedded
Systems
Abhiroop Sarkar
Chalmers University, Sweden
sarkara@chalmers.se

Bo Joel Svensson
Chalmers University, Sweden
joels@chalmers.se

Mary Sheeran
Chalmers University, Sweden
mary.sheeran@chalmers.se

Abstract
Programming embedded systems applications involves writing concurrent, event-driven and

timing-aware programs. Traditionally, such programs are written in low-level machine-oriented
programming languages like C or Assembler. We present an alternative by introducing Synchron, an
API that offers high-level abstractions to the programmer while supporting the low-level infrastructure
in an associated runtime system and one-time-effort drivers.

Embedded systems applications exhibit the general characteristics of being (i) concurrent, (ii)
I/O–bound and (iii) timing-aware. To address each of these concerns, the Synchron API consists
of three components - (1) a Concurrent ML (CML) inspired message-passing concurrency model,
(2) a message-passing–based I/O interface that translates between low-level interrupt based and
memory-mapped peripherals and (3) a timing operator syncT, that marries CML’s sync operator
with timing windows inspired from the TinyTimber kernel.

We implement the Synchron API as the bytecode instructions of a virtual machine called
SynchronVM. SynchronVM hosts a Caml-inspired functional language as its frontend language, and
the backend of the VM supports the STM32F4 and NRF52 microcontrollers, with RAM in the order
of hundreds of kilobytes. We illustrate the expressiveness of the Synchron API by showing examples
of expressing state machines commonly found in embedded systems. The timing functionality
is demonstrated through a music programming exercise. Finally, we provide benchmarks on the
response time, jitter rates and power usage of the SynchronVM.

2012 ACM Subject Classification Computer systems organization → Embedded software; Software
and its engineering → Runtime environments; Computer systems organization → Real-time languages;
Software and its engineering → Concurrent programming languages

Keywords and phrases real-time, concurrency, functional programming, runtime, virtual machine

Digital Object Identifier 10.4230/LIPIcs..2022.23

Funding This work was funded by the Swedish Foundation for Strategic Research (SSF) under the
project Octopi (Ref. RIT17-0023) and by the Chalmers Gender Initiative for Excellence (Genie).

1 Introduction

Embedded systems are ubiquitous and are pervasively found in application areas like IoT,
industrial machinery, cars, robotics, etc. Applications running on embedded systems usually
embody three common characteristics:

1. They are concurrent in nature.
2. They are predominantly I/O–bound applications.
3. A large subset of such applications are timing-aware.

© Abhiroop Sarkar, Bo Joel Svensson and Mary Sheeran;
licensed under Creative Commons License CC-BY

A Programming Conference.
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:–23:

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

56 CHAPTER 4. SYNCHRON - AN API AND RUNTIME FOR EMBEDDED SYSTEMS

23: Synchron - An API and Runtime for Embedded Systems

This list is by no means exhaustive but captures a prevalent theme among embedded
applications. Programming these applications involves interaction with callback-based driver
APIs like the following from the Zephyr RTOS[11]:

Listing 1 A callback-based GPIO driver API
1 int gpio_pin_interrupt_configure (const struct device *port
2 , gpio_pin_t pin
3 , gpio_flags_t flags);
4 void gpio_init_callback (struct gpio_callback * callback
5 , gpio_callback_handler_t handler
6 , gpio_port_pins_t pin_mask);
7 int gpio_add_callback (const struct device *port
8 , struct gpio_callback * callback);

Programming with such APIs in low-level languages like C leads to complicated state
machines that, even for relatively small programs, result in difficult-to-maintain and complex
state-transition tables. Moreover, C programmers use error-prone shared-memory primitives
like semaphores and locks to mediate interactions that occur between the callback-based
driver handlers.

More modern microcontroller runtimes like MicroPython [12] and Espruino (Javascript)
[35] support higher-order functions and handle callback-based APIs in the following way:

Listing 2 Driver interactions using Micropython
1 def callback (x):
2 #... callback body with nested callbacks ...
3

4 extint = pyb. ExtInt (pin , pyb. ExtInt . IRQ_FALLING
5 , pyb.Pin.PULL_UP , callback)
6 ExtInt . enable ()

The function callback(x) from Line 1 can in turn define a callback action callback2,
which can further define other callbacks leading to a cascade of nested callbacks. This leads
to a form of accidental complexity, colloquially termed as callback-hell [20].

We present Synchron, an API that attempts to address the concerns about callback-hell
and shared-memory communication while targeting the three characteristics of embedded
programs mentioned earlier by a combination of:

1. A message-passing–based concurrency model inspired from Concurrent ML.
2. A message-passing–based I/O interface that unifies concurrency and I/O.
3. A notion of time that fits the message-passing concurrency model.

Concurrent ML (CML) [25] builds upon the synchronous message-passing–based concur-
rency model CSP [15] but adds the feature of composable first-class events. These first-class
events allow the programmer to tailor new concurrency abstractions and express application-
specific protocols. Moreover, a synchronous concurrency model renders linear control-flow
to a program, as opposed to bottom-up, non-linear control flow exhibited by asynchronous
callback-based APIs.

Synchron extends CML’s message-passing API for software processes to I/O and hardware
interactions by modelling the external world as a process through the spawnExternal operator.
As a result, the standard message-passing functions such as send, receive etc. are applicable
for handling I/O interactions such as asynchronous driver interrupts. The overall API design
allows efficient scheduling and limited power usage of programs via an associated runtime.

For timing, Synchron has the syncT operator, drawing inspiration from the TinyTimber
kernel [19] that allows the specification of baseline and deadline windows for invocation of
a method in a class. In TinyTimber, WITHIN(B, D, &obj, meth, 123); expresses the

57

A. Sarkar, B.J. Svensson, M. Sheeran 23:

desire that method meth should be run at the earliest at time B and finish within a duration
of D. Our adaptation of this API, syncT B D evt, takes a baseline, deadline and a CML
event (evt) as arguments and obeys similar semantics as WITHIN.

The Synchron API is implemented in the form of a bytecode-interpreted virtual machine
(VM) called SynchronVM. The bytecode instructions of the VM correspond to the various
operations of the Synchron API, such that any language hosted on the VM can access
Synchron’s concurrency, I/O and timing API for embedded systems.

Internally, the SynchronVM runtime manages the scheduling and timing of the various
processes, interrupt handling, memory management, and other bookkeeping infrastructure.
Notably, the runtime system features a low-level bridge interface that abstracts it from
the platform-dependent specifics. The bridge translates low-level hardware interrupts or
memory-mapped I/O into software messages, enabling the SynchronVM application process
to use the message-passing API for low-level I/O.

Contributions
We identify three characteristic behaviours of embedded applications, namely being
(i) concurrent, (ii) I/O–bound, and (iii) timing-aware, and propose a combination of
abstractions (the Synchron API) that mesh well with each other and address these
requirements. We introduce the API in Section 3.
Message-passing–based I/O. We present a uniform message-passing framework that
combines concurrency and callback–based I/O to a single interface. A software message or
a hardware interrupt is identical in our programming interface, providing the programmer
with a simpler message-based framework to express concurrent hardware interactions.
We show the I/O API in Section 3.2 and describe the core runtime algorithms to support
this API in Section 4.
Declarative state machines for embedded systems. Combining CML primitives
with our I/O interface allows presenting a declarative framework to express state machines,
commonly found in embedded systems. We illustrate examples of representing finite-state
machines using the Synchron API in Sections 6.1 and 6.2.
Evaluation. We implement the Synchron API and its associated runtime within a
virtual machine, SynchronVM, described in Section 5. We illustrate the practicality and
expressivity of our API by presenting three case studies in Section 6, which runs on the
STM32 and NRF52 microcontroller boards. Finally, we show response-time, power usage,
jitter-rates, and load testing benchmarks on the SynchronVM in Section 7

2 Motivation

•Concurrency and IO. In embedded systems, concurrency takes the form of a combination
of callback handlers, interrupt service routines and possibly a threading system, for example
threads as provided by ZephyrOS, ChibiOS or FreeRTOS. The callback style of programming
is complicated but offers benefits when it comes to energy efficiency. Registering a callback
with an Interrupt Service Routine (ISR) allows the processor to go to sleep and conserve
power until the interrupt arrives.

An alternate pattern to restore the linear control flow of a program is the event-loop
pattern. As the name implies, an event-loop based program involves an infinitely running loop
that handles interrupts and dispatches the corresponding interrupt-handlers. An event-loop
based program involves some delicate plumbing that connects its various components. Listing
3 shows a tiny snippet of the general pattern.

58 CHAPTER 4. SYNCHRON - AN API AND RUNTIME FOR EMBEDDED SYSTEMS

23: Synchron - An API and Runtime for Embedded Systems

Listing 3 Event Loop
1 void eventLoop (){
2 while (1) {
3 switch (GetNextEvent ()) {
4 case GPIO1 : GPIO1Handler ();
5 case GPIO2 : GPIO2Handler ();
6
7 default : goToSleep (); // no events
8 }}}
9

10 GPIO1Handler (){ ... } // must not block
11 GPIO2Handler (){ ... } // must not block
12

13 // when interrupt arrives write to event queue
14 GPIO1_IRQ () {....}
15 GPIO2_IRQ () {....}

Programs like the above are an improvement over callbacks, as they restore the linear
control-flow of a program, which eases reasoning. However, such programs have a number
of weaknesses - (i) they enforce constraints on the blocking and non-blocking behaviours
of the event handlers, (ii) programmers have to hand-code elaborate plumbings between
the interrupt-handlers and the event-queue, (iii) they are highly inextensible as extension
requires code modifications on all components of the event-loop infrastructure, and (iv) they
are instances of clearly concurrent programs that are written in this style due to lack of
native concurrency support in the language.

Although there are extensions of C to aid the concurrent behaviour of event-loops, such
as protothreads [8] or FreeRTOS Tasks, the first three listed problems still persist. The main
infinite event loop unnecessarily induces a tight coupling between unrelated code fragments
like the two separate handlers for GPIO1 and GPIO2. Additionally, this pattern breaks
down the abstraction boundaries between the handlers.
•Time. A close relative of concurrent programming for embedded systems is real-time
programming. Embedded systems applications such as digital sound cards routinely exhibit
behaviour where the time of completion of an operation determines the correctness of the
program. Real-time programs, while concurrent, differ from standard concurrent programs
by allowing the programmer to override the fairness of a fair scheduler.

For instance, the FreeRTOS Task API allows a programmer to define a static priority
number, which can override the fairness of a task scheduler and customise the emergency of
execution of each thread. However, with a limited set of priorities numbers (1 - 5) it is very
likely for several concurrent tasks to end up with the same priority, leading the scheduler
to order them fairly once again. A common risk with priority-based systems is to run into
the priority inversion problem [31], which can have fatal consequences on hard real-time
scenarios. On the other hand, high-level language platforms for embedded systems such as
MicroPython [12] do not provide any language support for timing-aware computations.

Problem Statement. We believe there exists a gap for a high-level language that
can express concurrent, I/O–bound, and timing-aware programs for programming resource-
constrained embedded systems. We outline our key idea to address this gap below.

2.1 Key Ideas

Our key idea is the Synchron API, which adopts a synchronous message-passing concurrency
model and extends the message-passing functionality to all I/O interactions. Synchron also
introduces baselines and deadlines for the message-passing, which consequently introduces a

59

A. Sarkar, B.J. Svensson, M. Sheeran 23:

notion of time into the API. The resultant API is a collection of nine operations that can
express (i) concurrency, (ii) I/O, and (iii) timing in a uniform and declarative manner.

The external world as processes. The Synchron API models all external drivers as
processes that can communicate with the software layer through message-passing. Synchron’s
spawnExternal operator treats an I/O peripheral as a process and a hardware interrupt as
a message from the corresponding process. Fig. 1 illustrates the broad idea.

Figure 1 Software processes and hardware processes interacting

The above design relieves the programmer from writing complex callback handlers to deal
with asynchronous interrupts. The synchronous message-passing–based I/O further renders a
linear control-flow to I/O-bound embedded-system programs, allowing the modelling of state
machines in a declarative manner. Additionally, the message-passing framework simplifies
the hazards of concurrent programming with shared-memory primitives (like FreeRTOS
semaphores) and the associated perils of maintaining intricate locking protocols.

Hardware-Software Bridge. The Synchron runtime enables the seamless translation
between software messages and hardware interrupts. The runtime does hardware interactions
through a low-level software bridge interface, which is implemented atop the drivers supplied
by an OS like Zephyr/ChibiOS. The bridge layer serialises all hardware interrupts into the
format of a software message, thereby providing a uniform message-passing interaction style
for both software and hardware messages. Fig. 2 shows the overall architecture of Synchron.

Figure 2 The Synchron Architecture

Timing. The final key component of the Synchron API is the real-time function, syncT,
that instead of using a static priority for a thread (like Ada, RT-Java, FreeRTOS, etc.),
borrows the concept of a dynamic priority specification from TinyTimber [19].

The syncT function allows specifying a timing window by stating the baseline and deadline
of message communication between processes. The logical computational model of Synchron
assumes to take zero time and hence the time required for communication determines the
timing window of execution of the entire process. As the deadline of a process draws near,
the Synchron runtime can choose to dynamically change the priority of a process while it is
running. Fig. 3 illustrates the idea of dynamic priority-change.

60 CHAPTER 4. SYNCHRON - AN API AND RUNTIME FOR EMBEDDED SYSTEMS

23: Synchron - An API and Runtime for Embedded Systems

Figure 3 Dynamic priority change with syncT

Fig. 3 above shows how a scheduler can choose to prioritise a second process over a
running, timed process, even though the running process has a deadline in the future. In
practice, a scheduler needs to be able to pause and resume processes to support the above,
which is possible in the Synchron runtime. The syncT function, thus, fits fairly well with the
rest of the API and provides a notion of time to the overall programming interface.

The combination of syncT, spawnExternal and the CML-inspired synchronous message-
passing concurrency model constitutes the Synchron API that allows declarative specification
of embedded applications. We suggest that this API is an improvement, in terms of
expressivity, over the currently existing languages and libraries on embedded systems and
provide illustrative examples to support this in Section 6. We also provide benchmarks on
the Synchron runtime in Section 7. Next, we discuss the Synchron API in more detail.

3 The Synchron API

3.1 Synchronous Message-Passing and Events
We begin by looking at a standard synchronous message-passing API, like Hoare’s CSP [15] -

1 spawn : (() -> ()) -> ThreadId
2 channel : () -> Channel a
3 sendMsg : Channel a -> a -> ()
4 recvMsg : Channel a -> a

In the above type signatures the parameter, a indicates a polymorphic type. The call to
spawn allows the creation of a new process whose body is represented by the (()→ ()) type.
The channel () call creates a blocking channel along which a process can send or receive
messages using sendMsg and recvMsg respectively. A channel blocks until a sender has a
corresponding receiver and vice-versa. Multi-party communication in CSP is enabled using
the nondeterministic choice operation that races between two sets of synchronous operations
and chooses the one that succeeds first.

However, there is a fundamental conflict between procedural abstraction and the choice
operation. Using a procedure to represent a complex protocol involving multiple sends and
receives hides the critical operations over which a choice operation is run. On the other hand,
exposing the individual sends and receives prevents the construction of protocols with strict
message-ordering constraints (see Appendix ??). Reppy discusses this issue [25] in depth
and provides a solution in Concurrent ML (CML), which is adopted by the Synchron API.

The central idea is to break the act of synchronous communication into two steps:

(i) Expressing the intent of communication as an event-value
(ii) Synchronising between the sender and receiver via the event-value

61

A. Sarkar, B.J. Svensson, M. Sheeran 23:

The first step above results in the creation of a type of value called an Event. An event is
a first-class value in the language akin to the treatment of higher-order functions in functional
languages. Reppy describes events as "first-class synchronous operations" [25]. Adapting this
idea, the type signature of message sending and receiving in the Synchron API becomes :

send : Channel a → a → Event ()
recv : Channel a → Event a

Given a value of type Event, the second step of synchronising between processes and the
consequent act of communication is accomplished via the sync operation, whose type is :

sync : Event a → a

Intuitively, an equivalence can be drawn between the message passing in CSP and the
CML-style message passing (as adopted in the Synchron API) using function composition:

1 sync . (send c) ≡ sendMsg c
2 sync . recv ≡ recvMsg

The advantage of representing communication as a first-class value is that event-based
combinators can be used to build more elaborate communication protocols. In the same vein
as higher-order functions like function composition (.) and map, events support composition
via the following operators in the Synchron API :

choose : Event a → Event a → Event a
wrap : Event a → (a → b) → Event b

The choose operator is equivalent to the choice operation in CSP and the wrap operator
can be used to apply a post-synchronisation operation (of type a→ b). A large tree of events
representing a communication protocol can be built in this framework as follows :

1 protocol : Event ()
2 protocol =
3 choose (send c1 msg1)
4 (wrap (recv c2) (λ msg2 -> sync (send c3 msg2)))

Using events, the above protocol involving multiple sends and receives was expressible
as a procedural abstraction while still having the return type of Event (). A consumer of
the above protocol can further use the nondeterministic choice operator, choose, and choose
among multiple protocols. This combination of a composable functional programming style
and CSP-inspired multiprocess program design allows this API to represent callback-based,
state machine oriented programs in a declarative manner.
Comparisons between Events and Futures. The fundamental difference between events
and futures is that of deferred communication and deferred computation respectively. A future
aids in asynchronous computations by encapsulating a computation whose value is made
available at a future time. On the other hand, an event represents deferred communication as
a first-class entity in a language. Using the wrap combinator, it is possible to chain lambda
functions capturing computations that should happen post-communication as well. However,
events are fundamentally building blocks for communication protocols.

62 CHAPTER 4. SYNCHRON - AN API AND RUNTIME FOR EMBEDDED SYSTEMS

23: Synchron - An API and Runtime for Embedded Systems

3.2 Input and Output
The I/O component of Synchron is deeply connected to the Synchron runtime. Hence, we
mention parts of the low-level runtime implementation while describing the I/O interface.

In the Synchron API, I/O is expressed using the same events as are used for inter-process
communication. Each I/O device is connected to the running program using a primitive
we call spawnExternal as a hint that the programmer can think of, for example, an LED
as a process that can receive messages along a channel. Each external process denotes an
underlying I/O device that is limited to send and receive messages along one channel.

The spawnExternal primitive takes the channel to use for communication with software
and a driver and returns a "ThreadId" for symmetry with spawn.

spawnExternal : Channel a → Driver → ExternalThreadId

The first parameter supplied to spawnExternal is a designated fixed channel along which
the external process shall communicate. The second argument requires some form of identifier
to uniquely identify the driver. This identifier for a driver tends to be architecture-dependent.
For instance, when using low-level memory-mapped I/O, reads or writes to a memory address
are used to communicate with a peripheral. So the unique memory address would be an
identifier in that case. On the other hand, certain real-time operating system (such as
FreeRTOS or Zephyr) can provide more high-level abstractions over a memory address. In the
Synchron runtime, we number each peripheral in a monotonically increasing order, starting
from 0. So our spawnExternal API becomes:

1 type DriverNo = Int
2 spawnExternal : Channel a -> DriverNo -> ExternalThreadId

In the rest of the paper, we will use suggestive names for drivers like led0, uart1, etc
instead of plain integers for clarity. We have ongoing work to parse a file describing the
target board/MCU system, automatically number the peripherals and emit typed declaration
like led0 = LED 0 that can be used in the spawnExternal API.

To demonstrate the I/O API for asynchronous drivers, we present a standard example of
the button-blinky program. The program matches a button state to an LED so that when
the button is down, the LED is on, otherwise the LED is off:

Listing 4 Button-Blinky using the Synchron API
1 butchan = channel ()
2 ledchan = channel ()
3

4 glowled i = sync (send ledchan i)
5

6 f : ()
7 f = let _ = sync (wrap (recv butchan) glowled) in f
8

9 main =
10 let _ = spawnExternal butchan 0 in
11 let _ = spawnExternal ledchan 1 in f

Listing 4 above spawns two hardware processes - an LED process and a button process.
It then calls the function f which arrives at line 8 and waits for a button press. During
the waiting period, the scheduler can put the process to sleep to save power. When the
button interrupt arrives, the Synchron runtime converts the hardware interrupt to a software
message and wakes up process f. It then calls the glowled function on line 4 that sends a
switch-on message to the LED process and recursively calls f infinitely.

63

A. Sarkar, B.J. Svensson, M. Sheeran 23:

The above program represents an asynchronous, callback-based application in an entirely
synchronous framework. The same application written in C, on top of the Zephyr OS, is
more than 100 lines of callback-based code [10]. A notable aspect of the above program is
the lack of any non-linear callback-handling mechanism.

The structure of this program resembles the event-loop pattern presented in Listing 3
but fixes all of its associated deficiencies - (1) all Synchron I/O operations are blocking; the
runtime manages their optimal scheduling, not the programmer, (2) the internal plumbing
related to interrupt-handling and queues are invisible to the programmer, (3) the program is
highly extensible; adding a new interrupt handler is as simple as defining a new function.

3.3 Programming with Time
Real-time languages and frameworks generally provide a mechanism to override the fairness of
a fair scheduler. A typical fair scheduler abstracts away the details of prioritising processes.

However, in a real-time scenario, a programmer wants to precisely control the response-
time of certain operations. So the natural intuition for real-time C-extensions like FreeRTOS
Tasks or languages like Ada is to delegate the scheduling control to the programmer by
allowing them to attach a priority level to each process.

The priority levels involved decides the order in which a tie is broken by the scheduler.
However, with a small fixed number of priority levels it is likely for several processes to end
up with the same priority, leading the scheduler to order them fairly again within each level.

Another complication that crops up in the context of priorities is the priority inversion
problem [31]. Priority inversion is a form of resource contention where a high-priority thread
gets blocked on a resource held by a low-priority thread, thus allowing a medium priority
thread to take advantage of the situation and get scheduled first. The outcome of this
scenario is that the high-priority thread gets to run after the medium-priority thread, leading
to possible program failures.

The Synchron API admits the dynamic prioritisation of processes, drawing inspiration
from the TinyTimber kernel [21]. TinyTimber allows specifying a timing window expressed
as a baseline and deadline time, and a scheduler can use this timing window to determine
the runtime priority of a process. The timing window expresses the programmer’s wish that
the operation is started at the earliest on the baseline and no later than the deadline.

In Synchron, a programmer specifies a timing window (of the wall-clock time) during
which they want message synchronisation, that is the rendezvous between message sender
and receiver, to happen. We do this with the help of the timed-synchronisation operator,
syncT, with type signature:

syncT : Time → Time → Event a → a

Comparing the type signature of syncT with that of sync :
1 syncT : Time -> Time -> Event a -> a
2 sync : Event a -> a

The two extra arguments to syncT specify a lower and upper bound on the time of
synchronisation of an event. The two arguments to syncT, of type Time, express the relative
times calculated from the current wall-clock time. The first argument represents the relative
baseline - the earliest time instant from which the event synchronisation should begin. The
second argument specifies the relative deadline, i.e. the latest time instant (starting from the
baseline), by which the synchronisation should start. For instance,

64 CHAPTER 4. SYNCHRON - AN API AND RUNTIME FOR EMBEDDED SYSTEMS

23: Synchron - An API and Runtime for Embedded Systems

1 syncT (msec 50) (msec 20) timed_ev

means that the event, timed_ev, should begin synchronisation at the earliest 50 milliseconds
and the latest 50 + 20 milliseconds from now. The now concept is based on a thread’s
local view of what time it is. This thread-local time (Tlocal) is always less than or equal to
wall-clock time (Tabsolute). When a thread is spawned, its thread-local time, Tlocal, is set to
the wall-clock time, Tabsolute.

While a thread is running, its local time is frozen and unchanged until the thread executes
a timed synchronisation, a syncT operation where time progresses to Tlocal + baseline.

1 process1 _ =
2 let _ = s1 in -- Tlocal = 0
3 let _ = s2 in -- Tlocal = 0
4 let _ = syncT (msec 50) (usec 10) ev1 in
5 process1 () -- Tlocal = 50 msec

The above illustrates that the untimed operations s1 and s2 have no impact on a thread’s
view of what time it is. In essence, these operations are considered to take no time, which is a
reference to logical time and not the physical time. Synchron shares this logical computational
model with other systems such as the synchronous languages [7] and ChucK [33].

In practice, this assumption helps control jitter in the timing as long as the timing
windows specified on the synchronisation is large enough to contain the execution time of s1,
s2, the synchronisation step and the recursive call. Local and absolute time must meet up
at key points for this approach to work. Without the two notions of time meeting, local time
would drift away from absolute time in an unbounded fashion. For a practical implementation
of syncT, a scheduler needs to meet the following requirements:

The scheduler should provide a mechanism for overriding fair scheduling.
The scheduler must have access to a wall-clock time source.
A scheduler should attempt to schedule synchronisation such that local time meets up
with absolute time at that instant.

We shall revisit these requirements in Section 5 when describing the scheduler within the
Synchron runtime. Next, we shall look at a simple example use of syncT.

Blinky
The well-known blinky example, shown in Listing 5, involves blinking an LED on and off at
a certain frequency. Here we blink every one second.

Listing 5 Blinky with syncT
1 not 1 = 0
2 not 0 = 1
3

4 ledchan = channel ()
5

6 sec n = n * 1000000
7 usec n = n -- the unit -time in the Synchron runtime
8

9 foo : Int -> ()
10 foo val =
11 let _ = syncT (sec 1) (usec 1) (send ledchan val) in
12 foo (not val)
13

14 main = let _ = spawnExternal ledchan 1 in foo 1

65

A. Sarkar, B.J. Svensson, M. Sheeran 23:

In the above program, foo is the only software process, and there is one external hardware
process for the LED driver that can be communicated with, using the ledChan channel.
Line 11 is the critical part of the logic that sets the period of the program at 1 second, and
the recursion at Line 12 keep the program alive forever. Appendix A shows the details of
scheduling this program. We discuss a more involved example using syncT in Section 6.3.

4 Synchronisation Algorithms

The synchronous nature of message-passing is the foundation of the Synchron API. In this
section, we describe the runtime algorithms, in an abstract form, that enable processes to
synchronise. The Synchron runtime implements these algorithms, which drives the scheduling
of the various software processes.

In Synchron, we synchronise on events. Events, in our API, fall into the categories of
base events and composite events. The base events are send and recv and events created
using choose are composite.

1 composite_event = choose (send c1 m1) (choose (send c2 m2) (send c3 m3))

From the API’s point of view, composite events resemble a tree with base events in the
leaves. However, for the algorithm descriptions here, we consider an event to be a set of base
events. An implementation could impose an ordering on the base events that make up a
composite event. Different orderings correspond to different event-prioritisation algorithms.

In the algorithm descriptions below, a Channel consists of two FIFO queues, one for
send and one for recv. On these queues, process identities are stored. While blocked on a
recv on a channel, that process’ id is stored in the receive queue of that channel and likewise
for send and the send-queue. Synchronous exchange of the message means that messages
themselves do not need to be maintained on a queue.

Additionally, the algorithms below rely on there being a queue of processes that are ready
to execute. This queue is called the readyQ. In the algorithm descriptions below, handling
of wrap has been omitted. A function wrapped around an event specifies an operation that
should be performed after synchronisation has been completed. Also, we abstract over the
synchronisation of hardware events. As a convention, self used in the algorithms below
refers to the process from which the sync operation is executed.

4.1 Synchronising events
The synchronisation algorithm, that performs the API operation sync, accepts a set of
base events. The algorithm searches the set of events for a base event that has a sender or
receiver blocked (ready to synchronize) and passes the message between sender and receiver.
Algorithm 1 provides a high-level view of the synchronisation algorithm.

The first step in synchronisation is to see if there exists a synchronisable event in the set
of base events. The findSynchronisableEvent algorithm is presented in Algorithm 2.

If the findSynchronisableEvent algorithm is unable to find an event that can be synchron-
ised, the process initiating the synchronisation is blocked. The process identifier then gets
added to all the channels involved in the base events of the set. This is shown in Algorithm 3.

After registering the process identifiers on the channels involved, the currently running
process should yield its hold on the CPU, allowing another process to run. The next process
to start running is found using the dispatchNewProcess algorithm in Algorithm 4.

When two processes are communicating, the first one to be scheduled will block as the
other participant in the communication is not yet waiting on the channel. However, when

66 CHAPTER 4. SYNCHRON - AN API AND RUNTIME FOR EMBEDDED SYSTEMS

23: Synchron - An API and Runtime for Embedded Systems

Algorithm 1 The synchronisation algorithm
Data: event : Set

ev ← findSynchronisableEvent(event);
if ev ̸= ∅ then

syncNow(ev);
else

block(event);
dispatchNewThread();

end

Algorithm 2 The findSynchronisableEvent function
Data: event : Set

Result: A synchronisable event or ∅
foreach e ∈ event do

if e.baseEventType == SEND then
if ¬isEmpty(e.channelNo.recvq) then

return e

end
else if e.baseEventType == RECV then

if ¬isEmpty(e.channelNo.sendq) then
return e

end
else return ∅; /* Impossible case */

end
return ∅ ; /* No synchronisable event found */

Algorithm 3 The block function
Data: event : Set

foreach e ∈ event do
if e.baseEventType == SEND then

e.channelNo.sendq.enqueue(self);
else if e.baseEventType == RECV then

e.channelNo.recvq.enqueue(self);
else Do nothing; /* Impossible case */

end

Algorithm 4 The dispatchNewProcess function

if readyQ ̸= ∅ then
process← dequeue(readyQ);
currentProcess = process;

else
relinquish control to the underlying OS

end

67

A. Sarkar, B.J. Svensson, M. Sheeran 23:

dispatchNewProcess dispatches the second process, the findSynchronisableEvent function will
return a synchronisable event and the syncNow operation does the actual message passing.
The algorithm of syncNow is given in Algorithm 5 below.

Algorithm 5 The syncNow function
Data: A base-event value - event

if event.baseEventType == SEND then
receiver ← dequeue(event.channelNo.recvq);
deliverMSG(self, receiver, msg) ; /* pass msg from self to receiver */
readyQ.enqueue(self);

else if event.baseEventType == RECV then
sender ← dequeue(event.channelNo.sendq);
deliverMSG(sender, self, msg) ; /* pass msg from sender to self */
readyQ.enqueue(sender);

else Do nothing; /* Impossible case */

4.2 Timed synchronisation of events
Now, we look at the timed synchronisation algorithms. Timed synchronisation is handled
by a two-part algorithm - the first part (Algorithm 6) runs when a process is executing the
syncT API operation, and the second part (Algorithm 7) is executed later, after the baseline
time specified in the timed synchronisation, syncT, call.

These algorithms rely on there being an alarm facility based on absolute wall-clock time,
which invokes Algorithm 7 at a specific time. The alarm facility provides the operation
setAlarm used in the algorithms below. The algorithms also require a queue, waitQ, to hold
processes waiting for their baseline time-point.

The handleAlarm function in Algorithm 7 runs when an alarm goes off and, at that point,
makes a process from the waitQ ready for execution. When the alarm goes off, there could
be a process running already that should either be preempted by a timed process with a
tight deadline or be allowed to run to completion in case its deadline is the tightest. The
other alternative is that there is no process running and the process acquired from the waitQ
can immediately be made active.

5 Implementation in SynchronVM

The algorithms of Section 4 are implemented within the Synchron runtime. The Synchron
API and runtime are part of a larger programming platform that is the bytecode-interpreted
virtual machine called SynchronVM, which builds on the work by Sarkar et al. [26].

The execution unit of SynchronVM is based on the Categorical Abstract Machine (CAM)
[6]. CAM supports the cheap creation of closures, as a result of which SynchronVM can
support a functional language quite naturally. CAM was chosen primarily for its simplicity
and availability of pedagogical resources [14].

5.1 System Overview
Figure 4 shows the architecture of SynchronVM. The whole pipeline consists of three major
components - (i) the frontend, (ii) the middleware and (iii) the backend.

68 CHAPTER 4. SYNCHRON - AN API AND RUNTIME FOR EMBEDDED SYSTEMS

23: Synchron - An API and Runtime for Embedded Systems

Algorithm 6 The time function
Data: Relative Baseline = baseline, Relative Deadline = deadline

Twakeup = self.Tlocal + baseline;
if deadline == 0 then

Tfinish = Integer.MAX; /* deadline = 0 implies no deadline */
else

Tfinish = Twakeup + deadline;
end
self.deadline = Tfinish;
baselineabsolute = Tabsolute + baseline;
deadlineabsolute = Tabsolute + baseline + deadline;
cond1 = Tabsolute > deadlineabsolute;
cond2 = (Tabsolute ≥ baselineabsolute)&&(Tabsolute ≤ deadlineabsolute);
cond3 = baseline < SET_ALARM_AFTER;
if baseline == 0 ∨ cond1 ∨ cond2 ∨ cond3 then

readyQ.enqueue(currentThread);
dispatchNewProcess();

end
setAlarm(Twakeup);
waitQ.enqueue(self).orderBy(Twakeup);
dispatchNewProcess();

Algorithm 7 The handleAlarm function
Data: Wakeup Interrupt
timedProcess← dequeue(waitQ);
Tnow = timedProcess.baseline;
timedProcess.Tlocal = Tnow;
if waitQ ̸= ∅ then

timedProcess2 ← peek(waitQ); /* Does not dequeue */
setAlarm(timedProcess2.baseline);

end
if currentProcess == ∅; /* No process currently running */
then

currentProcess = timedProcess;
else

if timedProcess.deadline < currentProcess.deadline then
/* Preempt currently running process */
readyQ.enqueue(currentProcess);
currentProcess = timedProcess;

else
/* Schedule timed process to run after currentProcess */
readyQ.enqueue(timedProcess);
currentProcess.Tlocal = Tnow; /* Avoids too much time drift */

end
end

69

A. Sarkar, B.J. Svensson, M. Sheeran 23:

Figure 4 The compiler and runtime for SynchronVM

Frontend. We support a statically-typed, eagerly-evaluated, Caml-like functional lan-
guage on the frontend. The language comes equipped with Hindley-Milner type inference. The
polymorphic types are monomorphised at compile-time. The frontend module additionally
runs a lambda-lifting pass to reduce the heap-allocation of closures.

Middleware. The frontend language gets compiled to an untyped lambda-calculus-based
intermediate representation. This intermediate representation is then further compiled down
to the actual bytecode that gets interpreted at run time. The generated bytecode emulates
operations on a stack machine with a single environment register that holds the final value
of a computation. This module generates specialised bytecodes that reduce the environment
register-lookup using an operational notion called r-free variables described by Hinze [14].
On the generated bytecode, a peephole-optimisation pass applies further optimisations, such
as β-reduction and last-call optimisation [14] (a generalisation of tail-call elimination).

Backend. The backend module is the principal component of the SynchronVM. It can
be further classified into four components - (i) the bytecode interpreter, (ii) the runtime, (iii)
a low-level bridge interface, and (iv) underlying OS/driver support.

Interpreter. The interpreter is written in C99 for portability. Currently, we use a total of
55 bytecodes operating on a stack machine.

Runtime. The runtime consists of a fixed-size stack with an environment register. A
thread/process is emulated via the notion of a context, which holds a fixed-size stack, an
environment register and a program counter to indicate the bytecode that is being interpreted.
The runtime supports multiple but a fixed number of contexts, owing to memory constraints.
A context holds two additional registers - one for the process-local clock (Tlocal) and the
second to hold the deadline of that specific context (or thread).

The runtime has a garbage-collected heap to support closures and other composite values
like tuples, algebraic data types, etc. The heap is structured as a list made of uniformly-sized
tuples. For garbage collection, the runtime uses a standard non-moving, mark-and-sweep
algorithm with the Hughes lazy-sweep optimisation [16].

Low-level Bridge. The runtime uses the low-level bridge interface functions to describe
the various I/O-related interactions. It connects the runtime with the lowest level of the
hardware. We discuss it in depth in Section 5.4.

Underlying OS/drivers. The lowest level of SynchronVM uses a real-time operating
system that provides drivers for interacting with the various peripherals. The low-level is
not restricted to use any particular OS, as shall be demonstrated in our examples using both
the Zephyr-OS and ChibiOS.

70 CHAPTER 4. SYNCHRON - AN API AND RUNTIME FOR EMBEDDED SYSTEMS

23: Synchron - An API and Runtime for Embedded Systems

5.1.1 Concurrency, I/O and Timing bytecode instructions
For accessing the operators of our programming interface as well as any general runtime-based
operations, SynchronVM has a dedicated bytecode instruction - CALLRTS n, where n is a
natural number to disambiguate between operations. Table 1 shows the bytecode operations
corresponding to our programming interface.

spawn CALLRTS 0
channel CALLRTS 1
send CALLRTS 2

recv CALLRTS 3
sync CALLRTS 4
choose CALLRTS 5

spawnExternal CALLRTS 6
wrap CALLRTS 7

syncT CALLRTS 8;
CALLRTS 4

Table 1 Concurrency, I/O and Timing bytecodes

A notable aspect is the handling of the syncT operation, which gets compiled into a
sequence of two instructions. The first instruction in the syncT sequence is CALLRTS 8 which
corresponds to Algorithm 6 in Section 4. When the process is woken up again as a result of
Algorithm 7 it proceeds with the next instruction in the sequence which is sync, CALLRTS 4.

5.2 Message-passing with events
All forms of communication and I/O in SynchronVM operate via synchronous message-passing.
However, a distinct aspect of SynchronVM’s message-passing is the separation between the
intent of communication and the actual communication. A value of type Event indicates the
intent to communicate.

An event-value, like a closure, is a concrete runtime value allocated on the heap. The
fundamental event-creation primitives are send and recv, which Reppy calls base-event
constructors [25]. The event composition operators like choose and wrap operate on these
base-event values to construct larger events. When a programmer attempts to send or receive
a message, an event-value captures the channel number on which the communication was
desired. When this event-value is synchronised (Section 4), we use the channel number
as an identifier to match between prospective senders and receivers. Listing 6 shows the
heap representation of an event-value as the type event_t and the information that the
event-value captures on the SynchronVM.

Listing 6 Representing an Event in SynchronVM
1 typedef enum {
2 SEND , RECV
3 } event_type_t ;
4

5 typedef struct {
6 event_type_t e_type ; // 8 bits
7 UUID channel_id ; // 8 bits
8 } base_evt_simple_t ;
9

10 typedef struct {
11 base_evt_simple_t evt_details ; // stored with 16 bits free
12 cam_value_t wrap_func_ptr ; // 32 bits
13 } base_event_t ;
14

15

16 typedef struct {
17 base_event_t bev; // 32 bits
18 cam_value_t msg; // 32 bits; NULL for recv
19 } cam_event_t ;
20

21 typedef heap_index event_t ;

71

A. Sarkar, B.J. Svensson, M. Sheeran 23:

An event is implemented as a linked list of base-events constructed by applications of the
choose operation. Each element of the list captures (i) the message that is being sent or
received, (ii) any function that is wrapped around the base-event using wrap, (iii) the channel
being used for communication and (iv) an enum to distinguish whether the base-event is a
send or recv. Fig 5 visualises an event upon allocation to the Synchron runtime’s heap.

Figure 5 An event on the SynchronVM heap

The linked-list, as shown above, is the canonical representation of an Event-type. It can
represent any complex composite event. For instance, if we take an example composite event
that is created using the base-events, e1, e2, e3 and a wrapping function wf1, it can always
be rewritten to its canonical form.

1 choose e1 (wrap (choose e2 e3) wf1)
2

3 -- Rewrite to canonical form --
4

5 choose e1 (choose (wrap e2 wf1) (wrap e3 wf1))

The choose operation can simply be represented as consing onto the event list.

5.3 The scheduler
SynchronVM’s scheduler is a hyrbid of cooperative and preemptive scheduling. For applica-
tions that do not use syncT, the scheduler is cooperative in nature. Initially the threads are
scheduled in the order that the main method calls them. For example,

1 main =
2 let _ = spawn thread1 in
3 let _ = spawn thread2 in
4 let _ = spawn thread3 in ...

The scheduler orders the above in the order of thread1 first, thread2 next and thread3
last. As the program proceeds, the scheduler relies on the threads to yield their control
according to the algorithms of Section 4. When the scheduler is unable to find a matching
thread for the currently running thread that is ready to synchronise the communication, it
blocks the current thread and calls the dispatchNewThread() function to run other threads
(see Algorithm 1). On the other hand, when synchronisation succeeds, the scheduler puts
the message-sending thread in the readyQ and the message-receiving thread starts running.

The preemptive behaviour of the scheduler occurs when using syncT. For instance, when
a particular untimed thread is running and the baseline time of a timed thread has arrived,
the scheduler then preempts the execution of the untimed thread and starts running the
timed thread. A similar policy is also observed when the executing thread’s deadline is later
than a more urgent thread; the thread with the earliest deadline is chosen to be run at that
instance. Algorithm 7 shows the preemptive components of the scheduler.

72 CHAPTER 4. SYNCHRON - AN API AND RUNTIME FOR EMBEDDED SYSTEMS

23: Synchron - An API and Runtime for Embedded Systems

The SynchronVM scheduler also handles hardware driver interactions via message-passing.
The structure that is used for messaging is shown below:

Listing 7 A SynchronVM hardware message
1 typedef struct {
2 uint32_t sender_id ;
3 uint32_t msg_type ;
4 uint32_t data;
5 Time timestamp ;
6 } svm_msg_t ;

The svm_msg_t type contains a unique sender id for each driver that is the same as the
number used in spawnExternal to identify that driver. The 32 bit msg_type field can be
used to specify different meanings for the next field, the data. The data is a 32 bit word.
The timestamp field of a message struct is a 64 bit entity, explained in detail in Section 5.5.

When the SynchronVM scheduler has all threads blocked, it uses a function pointer called
blockMsg, which is passed to it by the OS that starts the scheduler, to wait for any interrupts
from the underlying OS (more details in Section 5.4). Upon receiving an interrupt, the
scheduler uses the SynchronVM runtime’s handleMsg function to handle the corresponding
message. The function internally takes the message and unblocks the thread for which the
message was sent. The general structure of SynchronVM’s scheduler is shown in Algorithm 8.

Algorithm 8 The SynchronVM scheduler
Data: blockMsg function pointer
∀threads set Tlocal = Tabsolute;
svm_msg_t msg;
while True do

if all threads blocked then
blockMsg(&msg); /* Relinquish control to OS */
handleMsg(msg);

else
interpret(currentThread.PC);

end
end

The Tlocal clock is initialised for each thread when starting up the scheduler. Also notable
is the blockMsg function that relinquishes control to the underlying OS, allowing it to save
power. When the interrupt arrives, the handleMsg function unblocks certain thread(s) so
that when the if..then clause ends, in the following iteration the else clause is executed and
bytecode interpretation continues. We next discuss the low-level bridge connecting Synchron
runtime to the underlying OS.

5.4 The Low-Level Bridge
The low-level bridge specifies two interfaces that should be implemented when writing
peripheral drivers to use with SynchronVM. The first contains functions for reading and
writing data synchronously to and from a driver. The second is geared towards interrupt-based
drivers that asynchronously produce data.

The C-struct below contains the interface functions for reading and writing data to a
driver as well as functions for checking the availability of data.

73

A. Sarkar, B.J. Svensson, M. Sheeran 23:

1 typedef struct ll_driver_s {
2 void * driver_info ;
3 bool is_synchronous ;
4 uint32_t (* ll_read_fun)(struct ll_driver_s *this , uint8_t *, uint32_t);
5 uint32_t (* ll_write_fun)(struct ll_driver_s *this , uint8_t *, uint32_t);
6 uint32_t (* ll_data_readable_fun)(struct ll_driver_s * this);
7 uint32_t (* ll_data_writeable_fun)(struct ll_driver_s * this);
8

9 UUID channel_id ;
10 } ll_driver_t ;

The driver_info field in the ll_driver_t struct can be used by a driver that implements
the interface to keep a pointer to lower-level driver specific data. For interrupt-based
drivers, this data will contain, among other things, an OS interoperation struct. These OS
interoperation structs are explained further below. A boolean indicates whether the driver
is synchronous or not. Next the struct contains function pointers to the low-level driver’s
implementation of the interface. Lastly, a channel_id identifies the channel along which the
driver is allowed to communicate with processes running on top of SynchronVM.

The ll_driver_t struct contains all the data associated with a driver’s configuration
in one place and defines a set of platform and driver independent functions for use in the
runtime system, shown below:

1 uint32_t ll_read (ll_driver_t *drv , uint8_t *data , uint32_t data_size);
2 uint32_t ll_write (ll_driver_t *drv , uint8_t *data , uint32_t data_size);
3 uint32_t ll_data_readable (ll_driver_t *drv);
4 uint32_t ll_data_writeable (ll_driver_t *drv);

The OS interoperation structs, mentioned above, are essential for drivers that asynchron-
ously produce data. We show their Zephyr and the ChibiOS versions below:

1 typedef struct zephyr_interop_s {
2 struct k_msgq *msgq;
3 int (* send_message)(struct zephyr_interop_s * this , svm_msg_t msg);
4 } zephyr_interop_t ;

1 typedef struct chibios_interop_s {
2 memory_pool_t * msg_pool ;
3 mailbox_t *mb;
4 int (* send_message)(struct chibios_interop_s * this , svm_msg_t msg);
5 } chibios_interop_t ;

In both cases, the struct contains the data that functions need to set up low-level message-
passing between the driver and the OS thread running the SynchronVM runtime. Zephyr
provides a message-queue abstraction that can take fixed-size messages, while ChibiOS
supports a mailbox abstraction that receives messages that are the size of a pointer. Since
ChibiOS mailboxes cannot receive data that is larger than a 32-bit word, a memory pool of
messages is employed in that case. The structure used to send messages from the drivers is
the already-introduced svm_msg_t struct, given in Listing 7.

The scheduler also needs to handle alarm interrupts from the wall-clock time subsystem,
arising from the syncT operation. The next section discusses that component of SynchronVM.

5.5 The wall-clock time subsystem
Programs running on SynchronVM that make use of the timed operations rely on there
being a monotonically increasing timer. The wall-clock time subsystem emulates this by
implementing a 64bit timer that would take almost 7000 years to overflow at 84MHz frequency
or about 36000 years at 16MHz. The timer frequency of 16MHz is used on the NRF52 board,
while the timer runs at 84MHz on the STM32.

74 CHAPTER 4. SYNCHRON - AN API AND RUNTIME FOR EMBEDDED SYSTEMS

23: Synchron - An API and Runtime for Embedded Systems

SynchronVM requires the implementation of the following functions for each of the
platforms (such as ChibiOS and Zephyr) that it runs on :

1 bool sys_time_init (void * os_interop);
2 Time sys_time_get_current_ticks (void);
3 uint32_t sys_time_get_alarm_channels (void);
4 uint32_t sys_time_get_clock_freq (void);
5 bool sys_time_set_wake_up (Time absolute);
6 Time sys_time_get_wake_up_time (void);
7 bool sys_time_is_alarm_set (void);

The timing subsystem uses the same OS interoperation structs as drivers do and thus
has access to a communication channel to the SynchronVM scheduler. The interoperation is
provided to the subsystem at initialisation using sys_time_init.

The key functionality implemented by the timing subsystem is the ability to set an alarm
at an absolute 64-bit point in time. Setting an alarm is done using sys_time_set_wake_up.
The runtime system can also query the timing subsystem to check if an alarm is set and at
what specific time.

The low-level implementation of the timing subsystem is highly platform dependent at
present. But on both Zephyr and ChibiOS, the implementation is currently based on a single
32-bit counter configured to issue interrupts at overflow, where an additional 32-bit value is
incremented. Alarms can only be set on the lower 32-bit counter at absolute 32-bit values.
Additional logic is needed to translate between the 64-bit alarms set by SynchronVM and
the 32-bit timers of the target platforms. Each time the overflow interrupt happens, the
interrupt service routine checks if there is an alarm in the next 32-bit window of time and
in that case, enables a compare interrupt to handle that alarm. When the alarm interrupt
happens, a message is sent to the SynchronVM scheduler in the same way as for interrupt
based drivers, using the message queue or mailbox from the OS interoperation structure.

Revisiting the requirements for implementing syncT, we find that our scheduler (1)
provides a preemptive mechanism to override the fair scheduling, (2) has access to a wall-clock
time source, and (3) implements an earliest-deadline-first scheduling policy that attempts to
match the local time and the absolute time.

5.6 Porting SynchronVM to another RTOS
For porting SynchronVM to a new RTOS, one needs to implement - (1) the wall-clock time
subsystem interface from Section 5.5, (2) the low-level bridge interface (Section 5.4) for each
peripheral, and (3) a mailbox or message queue for communication between asynchronous
drivers and the runtime system, required by the time subsystem.

Our initial platform of choice was ZephyrOS for its platform-independent abstractions.
The first port of SynchronVM was on ChibiOS, where the wall-clock time subsystem was 254
lines of C-code. The drivers for LED, PWM, and DAC were about 100 lines of C-code each.

6 Case Studies

Finite-State Machines with Synchron
We will begin with two examples of expressing state machines (involving callbacks) in the
Synchron API. Our examples are run on the NRF52840DK microcontroller board containing
four buttons and four LEDs. We particularly choose the button peripheral because its drivers
have a callback-based API that typically leads to non-linear control-flows in programs.

75

A. Sarkar, B.J. Svensson, M. Sheeran 23:

6.1 Four-Button-Blinky
We build on the button-blinky program from Listing 4 presented in Section 3.2. The original
program, upon a single button-press, would light up an LED corresponding to that press and
switch off upon the button release. We now extend that program to produce a one-to-one
mapping between four LEDs and four buttons such that button1 press lights up LED1,
button2 lights up LED2, button3 lights up LED3 and button4 lights up LED4 (while the
button releases switch off the corresponding LEDs).

The state machine of button-blinky is a standard two-state automaton that moves from the
ON-state to OFF on button-press and vice versa. Now, for the four button-LED combinations,
we have four state machines. We can combine them using the choose operator.

Listing 8 shows the important parts of the logic. The four state machines are declared
in Lines 1 to 4, and their composition happens in Line 6 using the choose operator. See
Appendix B.1 for the full program.

Listing 8 The Four-Button-Blinky program expressed in the Synchron API
1 press1 = wrap (recv butchan1) (λ x -> sync (send ledchan1 x))
2 press2 = wrap (recv butchan2) (λ x -> sync (send ledchan2 x))
3 press3 = wrap (recv butchan3) (λ x -> sync (send ledchan3 x))
4 press4 = wrap (recv butchan4) (λ x -> sync (send ledchan4 x))
5

6 anybutton = choose press1 (choose press2 (choose press3 press4))
7

8 program : ()
9 program = let _ = sync anybutton in program

6.2 A more intricate FSM
We now construct a more intricate finite-state machine involving intermediate states that can
move to an error state if the desired state-transition buttons are not pressed. For this example
a button driver needs to be configured to send only one message per button press-and-release.
So there is no separate button-on and button-off signal but one signal per button.

In this FSM, we glow the LED1 upon consecutive presses of button1 and button2. We
use the same path to turn LED1 off. However, if a press on button1 is followed by a press of
button 1 or 3 or 4, then we move to an error state indicated by LED3. We use the same
path to switch off LED3. In a similar vein, consecutive presses of button3 and button4 turns
on LED2 and button3 followed by button 1 or 2 or 3 turns on the error LED - LED3. Fig. 6
shows the FSM diagram of this application, omitting self-loops in the OFF state.

Figure 6 A complex state machine

Listing 9 shows the central logic expressing the FSM of Fig 6 in the Synchron API (See
Appendix B.2 for the full program). This FSM can be viewed as a composition of two

76 CHAPTER 4. SYNCHRON - AN API AND RUNTIME FOR EMBEDDED SYSTEMS

23: Synchron - An API and Runtime for Embedded Systems

separate finite state machines, one on the left side of the OFF state involving LED2 and
LED3 and one on the right side involving LED1 and LED3. Once again, we use the choose
operator to compose these two state machines.

Listing 9 The complex state machine running on the SynchronVM
1 errorLed x = ledchan3
2

3 fail1ev = choose (wrap (recv butchan1) errorLed)
4 (choose (wrap (recv butchan3) errorLed)
5 (wrap (recv butchan4) errorLed))
6

7 fail2ev = choose (wrap (recv butchan1) errorLed)
8 (choose (wrap (recv butchan2) errorLed)
9 (wrap (recv butchan3) errorLed))

10

11 led1Handler x =
12 sync (choose (wrap (recv butchan2) (\x -> ledchan1)) fail1ev)
13

14 led2Handler x =
15 sync (choose (wrap (recv butchan4) (\x -> ledchan2)) fail2ev)
16

17 led : Int -> ()
18 led state =
19 let fsm1 = wrap (recv butchan1) led1Handler in
20 let fsm2 = wrap (recv butchan3) led2Handler in
21 let ch = sync (choose fsm1 fsm2) in
22 let _ = sync (send ch (not state)) in
23 led (not state)

In Listing 9, the led1Handler1 and ledHandler2 functions capture the intermediate
states after one button press, when the program awaits the next button press. The error
states are composed using the choose operator in the functions fail1ev and fail2ev.

The compositional nature of our framework is visible in line no. 21 where we compose
the two state machines, fsm1 and fsm2, using the choose operator. Synchronising on this
composite event returns the LED channel (demonstrating a higher-order approach) on which
the process should attempt to write. This program is notably a highly callback-based, reactive
program that we have managed to represent in an entirely synchronous framework.

6.3 A soft-realtime music playing example
We present a soft-realtime music playing exercise from a Real-Time Systems course, expressed
using the Synchron API. We choose the popular nursery rhyme - "Twinkle, Twinkle, Little
Star". The program plays the tune repeatedly until it is stopped.

The core logic of the program involves periodically writing a sequence of 1’s and 0’s to
a DAC driver. However, to make the produced note sound musical to the human ear, the
periodic rate at which our process writes to the DAC driver is important, and this is where
the real-time aspect of the application comes in. The human ear recognises a note produced
at a certain frequency as a musical note. Our sound is generated at the 196Hz G3 music key.

Listing 10 shows the principal logic of the program expressed using the Synchron API.
Note that we use syncT to describe a new temporal combinator after that determines the
periodicity of this program. The list twinkle (line 17) holds the 28 notes in the twinkle song
and the list durations (line 18) provides the length of each note. Appendix B provides full
details of the program.

Listing 10 The Twinkle, Twinkle tune expressed using the Synchron API
1 msec t = t * 1000
2 usec t = t

77

A. Sarkar, B.J. Svensson, M. Sheeran 23:

3 after t ev = syncT t 0 ev
4

5 -- note frequencies
6 g = usec 2551
7 a = usec 2273
8 b = usec 2025
9 c = usec 1911

10 d = usec 1703
11 e = usec 1517
12

13 hn = msec 1000 -- half note
14 qn = msec 500 -- quarter note
15

16 twinkle , durations : List Int
17 twinkle = [g, g, d, d, e, e, d....] -- 28 notes
18 durations = [qn , qn , qn , qn , qn , qn , hn]
19

20 dacC = channel ()
21 noteC = channel ()
22

23 playerP : List Int -> List Int -> Int -> () -> ()
24 playerP melody nt n void =
25 if (n == 29)
26 then let _ = after (head nt) (send noteC (head twinkle)) in
27 playerP (tail twinkle) durations 2 void
28 else let _ = after (head nt) (send noteC (head melody)) in
29 playerP (tail melody) (tail nt) (n + 1) void
30

31 tuneP : Int -> Int -> () -> ()
32 tuneP timePeriod vol void =
33 let newtp =
34 after timePeriod (choose (recv noteC)
35 (wrap (send dacC (vol * 4095))
36 (λ _ -> timePeriod))) in
37 tuneP newtp (not vol) void
38

39 main =
40 let _ = spawnExternal dacC 0 in
41 let _ = spawn (tuneP (head twinkle) 1) in
42 let _ = spawn (playerP (tail twinkle) durations 2) in()

The application consists of two software processes and one external hardware process. We
use two channels - dacC to communicate with the DAC and noteC to communicate between
the two software processes. Looking at what each software process is doing -

playerP. This process runs at the rate of a note’s length. For a quarter note it wakes up
after 500 milliseconds (1000 msecs for a half note), traverses the next element of the twinkle
list and sends it along the noteC channel. It circles back after completing all 28 notes.

tuneP. This process is responsible for actually creating the sound. Its running rate varies
depending on the note that is being played. For instance, when playing note C, it will write
to the DAC at at a rate of 1911 microseconds-per-write. However, upon receiving a new
value along noteC, it changes its write frequency to the new value resulting in changing the
note of the song.

7 Benchmarks

7.1 Interpretive overhead measurements
We characterise the overhead of executing programs on top of SynchronVM, compared to
running them directly on either Zephyr or ChibiOS, by implementing button-blinky directly
on top of these operating systems and measuring the response-time differences.

78 CHAPTER 4. SYNCHRON - AN API AND RUNTIME FOR EMBEDDED SYSTEMS

23: Synchron - An API and Runtime for Embedded Systems

The button-blinky program copies the state of a button onto an LED, something that
could be done very rapidly at a large CPU utilization cost by continuously polling the button
state and writing it to the LED. Instead, the Zephyr and ChibiOS implementations are
interrupt-based and upon receiving a button interrupt (for either button press or release),
send a message to a thread that is kept blocking until such messages arrive. When the
thread receives a message indicating a button down or up, it sets the LED to on or off. This
approach keeps the low-level implementation in Zephyr and ChibiOS similar to SynchronVM
and indicates the interpretive and other overheads in SynchronVM.

The data in charts presented here is collected using an STM32F4 microcontroller based
testing system connected to either the NRF52 or the STM32F4 system under test (SUT). The
testing system provides the stimuli, setting the GPIO (button) to either active or inactive
and measures the time it takes for the SUT to respond on another GPIO pin (symbolising
the LED). The testing system connects to a computer displaying a GUI and generates the
plots used in this paper. Each plot places measured response times into buckets of similar
time, and shows the number of samples falling in each bucket as a vertical bar. Each bucket
is labelled with the average time of the samples it contains.

0 10 20 30
Time (us)

0

200

400

600

800

Fr
eq

u
en

cy

ChibiOs (MB)

SynchronVM

(a) Response time comparison between a C-code
implementation using ChibiOS against the same
program on SynchronVM (running on ChibiOS).
Data obtained on the STM32F4 microcontroller.

0 20 40 60 80
Time (us)

0

200

400

600

800

1000
Fr

eq
u

en
cy

SynchronVM

Zephyr (MQ)

(b) Response time comparison between a C-code
implementation using the Zephyr OS against
the same program on SynchronVM (running on
Zephyr). Data obtained on the NRF52 microcon-
troller.

Figure 7 Button-blinky response times comparison between C and SynchronVM

Fig. 7a shows the SynchronVM response time in comparison to the implementation of
the program running on ChibiOS using its mailbox abstraction (MB). There the overhead is
about 3x. Fig. 7b compares response times for SynchronVM and the Zephyr message queue
based implementation (MQ), and shows an overhead of 2.6x.

In the measurements relative to ChibiOS (Figure 7a), there are outliers both when running
on ChibiOS directly and when running SynchronVM on top of ChibiOS. In the ChibiOS
(MB) data there are 6 outliers where a response takes 1.6 times longer than an average
non-outlier response. For SynchronVM, 8 outliers take 2.1 times longer than an average
non-outlier SynchronVM response.

7.2 Effects of Garbage Collection
This experiment measures the effects of garbage collection on response time by repeatedly
running the 10000 samples test for different heap-size configurations of SynchronVM. A
smaller heap should lead to more frequent interactions with the garbage collector, and the
effects of the garbage collector on the response time should magnify.

79

A. Sarkar, B.J. Svensson, M. Sheeran 23:

As a smaller heap is used, the number of outliers should increase if the outliers are
due to garbage collection. The following table shows the number of outliers at each size
configuration for the heap used, and there is an indication that GC is the cause of outliers.

Heap size (bytes) 256 512 1024 2048 4096 8192
Outliers NRF52

on Zephyr 3334 1429 811 491 0 81

Outliers STM32
on ChibiOs 3339 1430 810 491 0 80

Figures 8 and 9 show the response-time numbers across the heap sizes of 8192, 4096, 2048,
1024, 512 and 256 Bytes. A general observable trend is that as the heap size decreases and
GC increases, the response time numbers hover towards the farther end of the X-axis. This
trend is most visible for the heap size of 256 bytes, which is our smallest heap size. Note that
we cannot collect enough sample data for response-time if we switch off the garbage collector
(as a reference value), as the program would very quickly run out of memory and terminate.

25.589

26.1221

46.38

46.9132

47.4463

47.9794

Time (us)

0

2000

4000

6000

8000

Fr
eq

ue
nc

y

1024

2048

256

4096

512

8192

Figure 8 Response time measurements at different sizes of the heap to identify effects of garbage
collection. This data is collected on the STM32F4 microcontroller running SynchronVM on top of
ChibiOS. Each bucket size is approx 0.533us. Uses 10000 samples.

80.6064

143.117

144.762

146.407

148.053

Time (us)

0

2000

4000

6000

8000

10000

Fr
eq

ue
nc

y

1024

2048

256

4096

512

8192

Figure 9 Response time measurements at different sizes of the heap to identify effects of garbage
collection. This data is collected on the NRF52 microcontroller running SynchronVM on top of the
Zephyr OS. Each bucket size is approx 1.65us. Uses 10000 samples.

7.3 Power Usage
Fig. 10 shows the power usage of the NRF52 microcontroller running the button-blinky
program for three implementations. The first implementation is a polling version of the
program in C. The second program uses a callback-based version of button-blinky [10].

80 CHAPTER 4. SYNCHRON - AN API AND RUNTIME FOR EMBEDDED SYSTEMS

23: Synchron - An API and Runtime for Embedded Systems

Polling in C Callback in C SynchronVM
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

LED on

LED off

W
at

ts

Figure 10 Power usage measured on the
NRF52 microcontroller

The last program is Listing 4 running on Syn-
chronVM. The measurements are made using
the Ruideng UM25C ammeter. We collect mo-
mentary readings from the ammeter after the
value has stabilised.

Notable in Fig. 10 is the polling-based C
implementation’s use of 0.0175 Watts of power
in a button-off state, whereas SynchronVM
consumes five times less power (0.0035 Watts).
This is comparable to the callback-based C
implementation’s use of 0.003 Watts. Integ-
rating the power usage over time will likely
make the difference between SynchronVM and
the callback-based C version more noticeable.
However, the simplicity and declarative nature of the Synchron-based code is a good tradeoff.

7.4 Memory Footprint
SynchronVM resides on the Flash memory of a microcontroller. On Zephyr, a tiny C
application occupies 17100 bytes, whereas the same SynchronVM application occupies 49356
bytes, which gives the VM’s footprint as 32256 bytes. For ChibiOS, the C application takes
18548 bytes, while the SynchronVM application takes 53868 bytes. Thus, SynchronVM takes
35320 bytes in this case. Hence, we can estimate SynchronVM’s rough memory footprint at
32 KB, which will grow with more drivers.

7.5 Precision and Jitter
Jitter can be defined as the deviation from true periodicity of a presumably periodic signal,
often in relation to a reference clock signal. We want to evaluate how our claims of syncT
reducing jitter pans out in practice.

Listing 11 below is written in a naive way to illustrate how jitter manifests in programs.
Figure 11a shows what the oscilloscope draws, set to persistent mode drawing while sampling
the signal from the Raspberry Pi outputs.

The Raspberry Pi program reads the status of a GPIO pin and then inverts its state
back to that same pin. The program then goes to sleep using usleep for 400us. The goal
frequency was 1kHz and sleeping for 400us here gave a roughly 1.05kHz signal. The more
expected sleep time of 500us to generate a 1kHz signal led, instead, to a much lower frequency.
So, the 400us value was found experimentally.

1 while (1) {
2 uint32_t state = GPIO_READ (23);
3 if (state) {
4 GPIO_CLR (23);
5 } else {
6 GPIO_SET (23);
7 }
8 usleep (400);
9 }

10 // main method and other setup
elided

Listing 11 Raspberry Pi C code

11 ledchan = channel ()
12

13 foo : Int -> ()
14 foo val =
15 let _ = syncT 500 0 (send

ledchan val)
16 in foo (not val)
17

18 main =
19 let _ = spawnExternal ledchan 1
20 in foo 1

Listing 12 SynchronVM 1KHz wave code

81

A. Sarkar, B.J. Svensson, M. Sheeran 23:

Listing 12 shows the same 1kHz frequency generator for SynchronVM. Note that, in this
case, specifying a baseline of 500us leads to a 1kHz wave (compared to the 400us used above
that together with additional delays of the system gave a roughly 1kHz wave).

(a) Illustrating the amount of jitter on the square
wave generated from the Raspberry Pi by setting
the oscilloscope display in persistent mode.

(b) A 1kHz square wave generated using Syn-
chronVM running on the STM32F4 with no jitter

Figure 11 A 1 kHz frequency generator on the Raspberry PI (in C) and STM32 (Synchron)

7.6 Load Test

The SynchronVM program in the previous section could produce a 1kHz-wave with no jitter.
However, the only operation that the program did was produce the square wave. In this
section, we want to test how much computational load can be performed by Synchron while
producing the square wave. We emulate the workload using the following program.

21 load i n =
22 let _ = fib_tailrec n in
23 let _ = syncT 8000 0 (send

ledchan i)
24 in load (not i)

25 loop i a b n =
26 if i == n then a
27 else loop (i+1) (b) (a+b) n
28

29 fib_tailrec n = loop 0 0 1 n

1000 500 250 125 62.5
0

20

40

60

80

100

120

140

160

180
Load

Frequency

Figure 12 Load testing SynchronVM with the
nth fibonacci number function

At a given frequency, it is possible to calculate
only up to a certain Fibonacci number while
generating the square wave at the desired fre-
quency. For example, when generating a 62.5
Hz wave, it is only possible to calculate up
to the 155th Fibonacci number. If the 156th
number is calculated, the wave frequency drops
below 62.5 Hz.
Fig. 12 plots the nth Fibonacci numbers that
can be calculated against the square wave fre-
quencies that get generated without jitters.
Our implementation of fib_tailrec involves
2 addition operations, 1 equality comparison
and 1 recursive call. So, calculating the 155th

Fibonacci number involves 155 ∗ 4 = 620 major operations. The trend shows that the load
capacity of SynchronVM grows linearly as the desired frequency of the square wave is halved.

82 CHAPTER 4. SYNCHRON - AN API AND RUNTIME FOR EMBEDDED SYSTEMS

23: Synchron - An API and Runtime for Embedded Systems

7.7 Music Program Benchmarks

16384 15360 14336 13312 12288 11264 10240 9216 8192 7168 6144 5120 4096 3072
0

20

40

60

80

100

120

140

160

180

CPU %

Allocation avg. (us)

Allocation time tot (ms)

Heap Size

Figure 13 CPU usage and allocation trends over a 1 minute window for Listing 10

We now provide some benchmarks on the music program from Section 6.3. Figure 13
shows CPU usage, average time it takes to allocate data and total time spent doing allocations
in a 1 minute window. The values used in the chart come from the second minute of running
the music application. The values from the first minute of execution are discarded as those
would include the startup phase of the system. The amount of heap made available to the
runtime system is varied from a roomy 16384 bytes down to 3072 bytes.

The sweep phase of our garbage collector is intertwined with the allocations phase. Hence,
instead of showing the GC time, the chart shows statistics related to all allocations that take
a measurable amount of time using the ChibiOS 10KHz system timer. All allocations taking
less than 100us are left of out of the statistics (and not counted towards averaging).

The data in Fig. 13 shows that CPU usage of the music application is pretty stable at
around 8 percent over the one minute window. It increases slightly for the very small heap
sizes and ends up at nearly 10 percent at the smallest heap size that can house the program.

In terms of allocation, the average time of an allocation (in usecs) increases when the
probability of a more expensive allocation increases, which in turn increases with small heap
sizes. In the last data series, the total amount of time spent in allocations (in msecs) grows
considerably as the heap size drops below 7168 bytes - an indicator of increased GC activity.

7.8 Discussion

Our benchmarks, so far, show promising results for power, memory, and CPU usage. How-
ever, SynchronVM’s response time is 2-3x times slower than native C code, which needs
improvement. We attribute the slowness to the CAM-based execution engine, which we hope
to mitigate by moving to a ZAM-based machine [18].

Our synthetic load test (Fig. 12) indicates that the VM can support around 150 operations
for applications that operate around 250Hz (such as balance bots). Our music program falls in
the range of 200-500 Hz, and SynchronVM could sustain that frequency without introducing
any jitter. There exist other non-periodic applications with much lower frequencies, such as
sensor networks, where SynchronVM could be applicable.

83

A. Sarkar, B.J. Svensson, M. Sheeran 23:

Comparison with Asynchronous Message-Passing
The Synchron API chooses a synchronous message-passing model, in contrast, with actor-
based systems like Erlang that support an asynchronous message-passing model with each
process containing a mailbox. We believe that a synchronous message-passing policy is better
suited for embedded systems for the following reasons:

1. Embedded systems are highly memory-constrained, and asynchronous send semantics
assume the unboundedness of an actor’s mailbox, which is a poor assumption in the
presence of memory constraints. Once the mailbox becomes full, message-sending becomes
blocking, which is already the default semantics of synchronous message-passing.

2. Acknowledgement is implicit in synchronous message-passing systems, in contrast to
explicit message acknowledgement in asynchronous systems that leads to code bloat.
Additionally, if a programmer forgets to remove acknowledgement messages from an
actor’s mailbox, it leads to memory leaks.

8 Limitations and Future Work

In this section, we propose future work to improve the Synchron API and runtime.

8.1 Synchron API limitation
Deadline miss API. Currently, the Synchron API cannot represent actions that should
happen if a task were to miss its deadline. We envision adapting the negative acknowledgement
API of CML to represent missed-deadline handlers for Synchron.

8.2 SynchronVM limitations
Memory management. A primary area of improvement is upgrading our stop-the-world
mark and sweep garbage collector and investigating real-time garbage collectors like Schism
[23]. Another relevant future work would be investigating static memory-management
schemes like regions [30] and techniques combining regions with GC [13].

Interpretation overhead. A possible approach to reducing our interpretation overhead
could be pre-compiling our bytecode to machine code (AOT compilation). Similarly, dynamic
optimization approaches like JITing could be an area of investigation.

Priority inversions. Although TinyTimber-style dynamic priorities might reduce
priority inversion occurrences, they can still occur on the SynchronVM. Advanced approaches
like priority inheritance protocols [27] need to be experimented with on our scheduler.

8.3 General runtime limitations
Power efficiency and lifetime while operating from a small battery is challenging for a
byte-code interpreting virtual machine.
Safety-critical, hard real-time systems remain out of reach with a bytecode-interpreted
and garbage collected virtual machine.

9 Related Work

Among functional languages running on microcontrollers, there exists OCaml running on
OMicroB [32], Scheme running on Picobit [29] and Erlang running on AtomVM [4]. Synchron

84 CHAPTER 4. SYNCHRON - AN API AND RUNTIME FOR EMBEDDED SYSTEMS

23: Synchron - An API and Runtime for Embedded Systems

differs from these projects in the aspect that we identify certain fundamental characteristics
of embedded systems and accordingly design an API and runtime to address those demands.
As a result, our programming interface aligns more naturally to the requirements of an
embedded systems application, in contrast with general-purpose languages like Scheme.

The Medusa [2] language and runtime is the inspiration behind our uniform framework
of concurrency and I/O. Medusa, however, does not provide any timing based APIs, and
their message-passing framework is based on the actor model (See Section 7.8).

In the real-time space, a safety-critical VM that can provide hard real-time guarantees
on Real-Time Java programs is the FijiVM [24] implementation. A critical innovation of
the project was the Schism real-time garbage collector [23], from which we hope to draw
inspiration for future work on memory management.

RTMLton [28] is another example of a real-time project supporting a general-purpose
language like SML. RTMLton adapts the MLton runtime [34] with ideas from FijiVM to enable
handling real-time constraints in SML. CML is available as an SML library, so RTMLton
provides access to the event framework of CML but lacks the uniform concurrency-I/O model
and the syncT operator of Synchron.

The Timber language [5] is an object-oriented language that inspired the syncT API of
Synchron. Timber was designed for hard real-time scenarios; related work on estimating
heap space bounds [17] could perhaps benefit our future research.

The WebAssembly project (WASM) has spawned sub-projects like WebAssembly Micro
Runtime (WAMR) [1] that allows running languages that compile to WASM on microcon-
trollers. Notable here is that while several general-purpose languages like JavaScript can
execute on ARM architectures by compiling to WebAssembly, they lack the native support
for the concurrent, I/O-bound, and timing-aware programs that is naturally provided by our
API and its implementation. Reactive extensions of Javascript, like HipHop.js [3], are being
envisioned to be used for embedded systems.

Another related line of work is embedding domain-specific languages like Ivory [9] and
Copilot [22] in Haskell to generate C programs that can run on embedded devices. This
approach differs from ours in the aspect that two separate languages dictate the programming
model of an EDSL - the first being the DSL itself and the second being the host language
(Haskell). We assess that having a single language (like in Synchron) provides a more uniform
programming model to the programmer. However, code-generating EDSLs have very little
runtime overheads and, when fully optimised, can produce high performance C.

10 Conclusion

In this paper, we have presented Synchron - an API and runtime for embedded systems, which
we implement within the larger SynchronVM. We identified three essential characteristics
of embedded applications, namely being concurrent, I/O–bound, and timing-aware, and
correspondingly designed our API to address all three concerns. Our evaluations, conducted
on the STM32 and NRF52 microcontrollers, show encouraging results for power, memory
and CPU usage of the SynchronVM. Our response time numbers are within the range of
2-3x times that of native C programs, which we envision being improved by moving to a
register-based execution engine and by using smarter memory-management strategies. We
have additionally demonstrated the expressivity of our API through state machine-based
examples, commonly found in embedded systems. Finally, we illustrated our timing API by
expressing a soft real-time application, and we expect further theoretical investigations on
the worst-case execution time and schedulability analysis on SynchronVM.

85

A. Sarkar, B.J. Svensson, M. Sheeran 23:

References
1 WAMR - WebAssembly Micro Runtime, 2019. URL: https://github.com/

bytecodealliance/wasm-micro-runtime.
2 Thomas W. Barr and Scott Rixner. Medusa: Managing Concurrency and Communication in

Embedded Systems. In Garth Gibson and Nickolai Zeldovich, editors, 2014 USENIX Annual
Technical Conference, USENIX ATC ’14, Philadelphia, PA, USA, June 19-20, 2014, pages
439–450. USENIX Association, 2014. URL: https://www.usenix.org/conference/atc14/
technical-sessions/presentation/barr.

3 Gérard Berry and Manuel Serrano. Hiphop.js: (A)Synchronous reactive web programming. In
Alastair F. Donaldson and Emina Torlak, editors, Proceedings of the 41st ACM SIGPLAN
International Conference on Programming Language Design and Implementation, PLDI 2020,
London, UK, June 15-20, 2020, pages 533–545. ACM, 2020. doi:10.1145/3385412.3385984.

4 Davide Bettio. AtomVM, 2017. URL: https://github.com/bettio/AtomVM.
5 Andrew P Black, Magnus Carlsson, Mark P Jones, Richard Kieburtz, and Johan Nordlander.

Timber: A programming language for real-time embedded systems. Technical report, OGI
School of Science and Engineering, Oregon Health and Sciences University, Technical Report
CSE 02-002. April 2002, 2002.

6 Guy Cousineau, Pierre-Louis Curien, and Michel Mauny. The Categorical Abstract Machine. In
Jean-Pierre Jouannaud, editor, Functional Programming Languages and Computer Architecture,
FPCA 1985, Nancy, France, September 16-19, 1985, Proceedings, volume 201 of Lecture Notes
in Computer Science, pages 50–64. Springer, 1985. doi:10.1007/3-540-15975-4_29.

7 Robert de Simone, Jean-Pierre Talpin, and Dumitru Potop-Butucaru. The Synchronous
Hypothesis and Synchronous Languages. In Richard Zurawski, editor, Embedded Systems
Handbook. CRC Press, 2005. doi:10.1201/9781420038163.ch8.

8 Adam Dunkels, Oliver Schmidt, Thiemo Voigt, and Muneeb Ali. Protothreads: simplifying
event-driven programming of memory-constrained embedded systems. In Andrew T. Campbell,
Philippe Bonnet, and John S. Heidemann, editors, Proceedings of the 4th International
Conference on Embedded Networked Sensor Systems, SenSys 2006, Boulder, Colorado, USA,
October 31 - November 3, 2006, pages 29–42. ACM, 2006. doi:10.1145/1182807.1182811.

9 Trevor Elliott, Lee Pike, Simon Winwood, Patrick C. Hickey, James Bielman, Jamey Sharp,
Eric L. Seidel, and John Launchbury. Guilt free ivory. In Ben Lippmeier, editor, Proceedings
of the 8th ACM SIGPLAN Symposium on Haskell, Haskell 2015, Vancouver, BC, Canada,
September 3-4, 2015, pages 189–200. ACM, 2015. doi:10.1145/2804302.2804318.

10 Zephyr examples. Zephyr button blinky, 2021. URL: https://pastecode.io/s/szpf673u.
11 The Linux Foundation. Zephyr RTOS. https://www.zephyrproject.org/. Accessed 2021-

11-28.
12 Damien George. Micropython, 2014. URL: https://micropython.org/.
13 Niels Hallenberg, Martin Elsman, and Mads Tofte. Combining Region Inference and Garbage

Collection. In Jens Knoop and Laurie J. Hendren, editors, Proceedings of the 2002 ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI), Berlin,
Germany, June 17-19, 2002, pages 141–152. ACM, 2002. doi:10.1145/512529.512547.

14 Ralf Hinze. The Categorical Abstract Machine: Basics and Enhancements. Technical report,
University of Bonn, 1993.

15 C. A. R. Hoare. Communicating Sequential Processes. Commun. ACM, 21(8):666–677, 1978.
doi:10.1145/359576.359585.

16 R John M Hughes. A semi-incremental garbage collection algorithm. Software: Practice and
Experience, 12(11):1081–1082, 1982.

17 Martin Kero, Pawel Pietrzak, and Johan Nordlander. Live Heap Space Bounds for Real-
Time Systems. In Kazunori Ueda, editor, Programming Languages and Systems - 8th Asian
Symposium, APLAS 2010, Shanghai, China, November 28 - December 1, 2010. Proceedings,
volume 6461 of Lecture Notes in Computer Science, pages 287–303. Springer, 2010. doi:
10.1007/978-3-642-17164-2_20.

86 CHAPTER 4. SYNCHRON - AN API AND RUNTIME FOR EMBEDDED SYSTEMS

23: Synchron - An API and Runtime for Embedded Systems

18 Xavier Leroy. The ZINC experiment: an economical implementation of the ML language. PhD
thesis, INRIA, 1990.

19 Per Lindgren, Johan Eriksson, Simon Aittamaa, and Johan Nordlander. TinyTimber, Reactive
Objects in C for Real-Time Embedded Systems. In 2008 Design, Automation and Test in
Europe, pages 1382–1385, 2008. doi:10.1109/DATE.2008.4484933.

20 Tommi Mikkonen and Antero Taivalsaari. Web Applications - Spaghetti Code for the 21st
Century. In Walter Dosch, Roger Y. Lee, Petr Tuma, and Thierry Coupaye, editors, Proceedings
of the 6th ACIS International Conference on Software Engineering Research, Management
and Applications, SERA 2008, 20-22 August 2008, Prague, Czech Republic, pages 319–328.
IEEE Computer Society, 2008. doi:10.1109/SERA.2008.16.

21 Johan Nordlander. Programming with the TinyTimber kernel. Luleå tekniska universitet, 2007.
22 Lee Pike, Alwyn Goodloe, Robin Morisset, and Sebastian Niller. Copilot: A Hard Real-Time

Runtime Monitor. In Howard Barringer, Yliès Falcone, Bernd Finkbeiner, Klaus Havelund,
Insup Lee, Gordon J. Pace, Grigore Rosu, Oleg Sokolsky, and Nikolai Tillmann, editors,
Runtime Verification - First International Conference, RV 2010, St. Julians, Malta, November
1-4, 2010. Proceedings, volume 6418 of Lecture Notes in Computer Science, pages 345–359.
Springer, 2010. doi:10.1007/978-3-642-16612-9_26.

23 Filip Pizlo, Lukasz Ziarek, Petr Maj, Antony L. Hosking, Ethan Blanton, and Jan Vitek. Schism:
fragmentation-tolerant real-time garbage collection. In Benjamin G. Zorn and Alexander
Aiken, editors, Proceedings of the 2010 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2010, Toronto, Ontario, Canada, June 5-10, 2010, pages
146–159. ACM, 2010. doi:10.1145/1806596.1806615.

24 Filip Pizlo, Lukasz Ziarek, and Jan Vitek. Real time Java on resource-constrained platforms
with Fiji VM. In M. Teresa Higuera-Toledano and Martin Schoeberl, editors, Proceedings of the
7th International Workshop on Java Technologies for Real-Time and Embedded Systems, JTRES
2009, Madrid, Spain, September 23-25, 2009, ACM International Conference Proceeding Series,
pages 110–119. ACM, 2009. doi:10.1145/1620405.1620421.

25 John H. Reppy. Concurrent ML: Design, Application and Semantics. In Peter E. Lauer,
editor, Functional Programming, Concurrency, Simulation and Automated Reasoning: In-
ternational Lecture Series 1991-1992, McMaster University, Hamilton, Ontario, Canada,
volume 693 of Lecture Notes in Computer Science, pages 165–198. Springer, 1993. doi:
10.1007/3-540-56883-2_10.

26 Abhiroop Sarkar, Robert Krook, Bo Joel Svensson, and Mary Sheeran. Higher-Order
Concurrency for Microcontrollers. In Herbert Kuchen and Jeremy Singer, editors, MPLR
’21: 18th ACM SIGPLAN International Conference on Managed Programming Languages
and Runtimes, Münster, Germany, September 29-30, 2021, pages 26–35. ACM, 2021.
doi:10.1145/3475738.3480716.

27 Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky. Priority Inheritance Protocols: An
Approach to Real-Time Synchronization. IEEE Trans. Computers, 39(9):1175–1185, 1990.
doi:10.1109/12.57058.

28 Bhargav Shivkumar, Jeffrey C. Murphy, and Lukasz Ziarek. RTMLton: An SML Runtime for
Real-Time Systems. In Ekaterina Komendantskaya and Yanhong Annie Liu, editors, Practical
Aspects of Declarative Languages - 22nd International Symposium, PADL 2020, New Orleans,
LA, USA, January 20-21, 2020, Proceedings, volume 12007 of Lecture Notes in Computer
Science, pages 113–130. Springer, 2020. doi:10.1007/978-3-030-39197-3_8.

29 Vincent St-Amour and Marc Feeley. PICOBIT: A Compact Scheme System for Microcontrollers.
In Marco T. Morazán and Sven-Bodo Scholz, editors, Implementation and Application of
Functional Languages - 21st International Symposium, IFL 2009, South Orange, NJ, USA,
September 23-25, 2009, Revised Selected Papers, volume 6041 of Lecture Notes in Computer
Science, pages 1–17. Springer, 2009. doi:10.1007/978-3-642-16478-1_1.

30 Mads Tofte and Jean-Pierre Talpin. Region-based Memory Management. Inf. Comput.,
132(2):109–176, 1997. doi:10.1006/inco.1996.2613.

87

A. Sarkar, B.J. Svensson, M. Sheeran 23:

31 Hideyuki Tokuda, Clifford W. Mercer, Yutaka Ishikawa, and Thomas E. Marchok. Priority
Inversions in Real-Time Communication. In Proceedings of the Real-Time Systems Symposium
- 1989, Santa Monica, California, USA, December 1989, pages 348–359. IEEE Computer
Society, 1989. doi:10.1109/REAL.1989.63587.

32 Steven Varoumas, Benoît Vaugon, and Emmanuel Chailloux. A Generic Virtual Machine
Approach for Programming Microcontrollers: the OMicroB Project. In 9th European Congress
on Embedded Real Time Software and Systems (ERTS 2018), 2018.

33 Ge Wang and Perry R. Cook. ChucK: A Concurrent, On-the-fly, Audio Programming
Language. In Proceedings of the 2003 International Computer Music Conference, ICMC
2003, Singapore, September 29 - October 4, 2003. Michigan Publishing, 2003. URL: http:
//hdl.handle.net/2027/spo.bbp2372.2003.055.

34 Stephen Weeks. Whole-program compilation in MLton. In Andrew Kennedy and François
Pottier, editors, Proceedings of the ACM Workshop on ML, 2006, Portland, Oregon, USA,
September 16, 2006, page 1. ACM, 2006. doi:10.1145/1159876.1159877.

35 Gordon Williams. Espruino, 2012. URL: http://www.espruino.com/.

A Appendix A - Scheduling Blinky

Scheduling Blinky
Fig. 14 below shows the timeline of our scheduler executing the blinky program from Listing 5.
This chart involves two clocks. The actual wall-clock time, Tabsolute, is represented along the
X-axis while the process-local clock, Tlocal, for the process foo is shown inside the body of
green chart representing foo.

Figure 14 Scheduler timeline while executing the blinky program

When the program arrives at the syncT statement, an alarm is set for the time at which
the VM should begin attempting communication with the LED driver. The alarm is set
exactly at the 1-second mark, calculated from the Tlocal clock, which removes the jitter
associated with other statement executions and runtime overheads.

Once the alarm interrupt arrives, communication is initiated, and the deadline counter
gets activated. The LED driver takes TLED seconds to execute, and the scheduler takes
an additional δ4 time units to unblock the process foo. So, the deadline requested to the
runtime follows the relation - δ4 + TLED < 1 usec. Finally, Tlocal is incremented by the
relation Tlocal = Tlocal + baseline, where the baseline is 1 second in our case and the program
continues.

88 CHAPTER 4. SYNCHRON - AN API AND RUNTIME FOR EMBEDDED SYSTEMS

23: Synchron - An API and Runtime for Embedded Systems

B Appendix B - FSM Examples

B.1 Four button blinky
Listing 13 The complete Four-Button-Blinky program (Section 6.1) running on SynchronVM

1 butchan1 = channel ()
2 butchan2 = channel ()
3 butchan3 = channel ()
4 butchan4 = channel ()
5

6 ledchan1 = channel ()
7 ledchan2 = channel ()
8 ledchan3 = channel ()
9 ledchan4 = channel ()

10

11 press1 = wrap (recv butchan1) (λ x -> sync (send ledchan1 x))
12 press2 = wrap (recv butchan2) (λ x -> sync (send ledchan2 x))
13 press3 = wrap (recv butchan3) (λ x -> sync (send ledchan3 x))
14 press4 = wrap (recv butchan4) (λ x -> sync (send ledchan4 x))
15

16 anybutton = choose press1 (choose press2 (choose press3 press4))
17

18 program : ()
19 program =
20 let _ = sync anybutton in
21 program
22

23 main =
24 let _ = spawnExternal butchan1 0 in
25 let _ = spawnExternal butchan2 1 in
26 let _ = spawnExternal butchan3 2 in
27 let _ = spawnExternal butchan4 3 in
28 let _ = spawnExternal ledchan1 4 in
29 let _ = spawnExternal ledchan2 5 in
30 let _ = spawnExternal ledchan3 6 in
31 let _ = spawnExternal ledchan4 7 in
32 program

B.2 Large State Machine
Listing 14 The complete complex state machine (Section 6.2) running on SynchronVM

1 butchan1 : Channel Int
2 butchan1 = channel ()
3 butchan2 : Channel Int
4 butchan2 = channel ()
5 butchan3 : Channel Int
6 butchan3 = channel ()
7 butchan4 : Channel Int
8 butchan4 = channel ()
9

10 ledchan1 : Channel Int
11 ledchan1 = channel ()
12 ledchan2 : Channel Int
13 ledchan2 = channel ()
14 ledchan3 : Channel Int
15 ledchan3 = channel ()
16 ledchan4 : Channel Int
17 ledchan4 = channel ()
18

19 not : Int -> Int
20 not 1 = 0
21 not 0 = 1
22

89

A. Sarkar, B.J. Svensson, M. Sheeran 23:

23 errorLed x = ledchan3
24

25 fail1ev = choose (wrap (recv butchan1) errorLed)
26 (choose (wrap (recv butchan3) errorLed)
27 (wrap (recv butchan4) errorLed))
28

29 fail2ev = choose (wrap (recv butchan1) errorLed)
30 (choose (wrap (recv butchan2) errorLed)
31 (wrap (recv butchan3) errorLed))
32

33 led1Handler x =
34 sync (choose (wrap (recv butchan2) (\x -> ledchan1)) fail1ev)
35

36 led2Handler x =
37 sync (choose (wrap (recv butchan4) (\x -> ledchan2)) fail2ev)
38

39 led : Int -> ()
40 led state =
41 let fsm1 = wrap (recv butchan1) led1Handler in
42 let fsm2 = wrap (recv butchan3) led2Handler in
43 let ch = sync (choose fsm1 fsm2) in
44 let _ = sync (send ch (not state)) in
45 led (not state)
46

47 main =
48 let _ = spawnExternal butchan1 0 in
49 let _ = spawnExternal butchan2 1 in
50 let _ = spawnExternal butchan3 2 in
51 let _ = spawnExternal butchan4 3 in
52 let _ = spawnExternal ledchan1 4 in
53 let _ = spawnExternal ledchan2 5 in
54 let _ = spawnExternal ledchan3 6 in
55 let _ = spawnExternal ledchan4 7 in
56 led 0

C Appendix C - The complete music programming example

We run this program on the STM32F4-discovery board that comes with a 12-bit digital-to-
analog converter (DAC), which we connect to a speaker as a peripheral. We can write a
value between 0 to 4095 to the DAC driver that gets translated to a voltage between 0 to 3V
on the DAC output pin.

To produce a sound note we need to periodically write a sequence of 1’s and 0’s to the
DAC driver. However, to make the produced note sound musical to the human ear, the
periodic rate at which our process writes to the DAC driver is very important, and this is
where the real-time aspect of the application comes in. The human ear recognises a note
produced at a certain frequency as a musical note. Frequency is related to the periodic rate
of a process by the relation:

Period = 1/Frequency

For instance, the musical note A occurs at a frequency of 440 Hz, which implies it has a
time period of 2273 µseconds. From the point of view of the software, we are actually writing
two values, a 1 and a 0, so we need to further divide the value by 2 to determine our rate of
each individual write. If we call the rate of our writes as TimeW rite, we get the relation -

90 CHAPTER 4. SYNCHRON - AN API AND RUNTIME FOR EMBEDDED SYSTEMS

23: Synchron - An API and Runtime for Embedded Systems

TimeW rite = Period/2 = 1/(2 ∗ Frequency)

Now that we know how to calculate the periodicity of our write in relation to the frequency,
we need to know (i) what are the musical notes that occur in the "Twinkle, Twinkle" rhyme
and (ii) what are the frequencies corresponding to those notes so that we can calculate the
TimeW rite value from the frequency. The musical notes of the "Twinkle, Twinkle" tune (in
the key of G) are well known and is given below:

G G D D E E D C C B B A A G D D C C B B A D D C C B B A

Given the above notes, the frequency of each of these notes are also well known. In
Table 2 we show our calculation of the TimeW rite value for the various musical notes.

Note Frequency (Hz) Period (µsec) TimeW rite (µsec)

G 196 5102 2551
A 220 4546 2273
B 247 4050 2025
C 261 3822 1911
D 294 3406 1703
E 329 3034 1517

Table 2 Musical notes, their frequencies and time periods

Now we need to specify the time duration of each note. At the end of each note’s duration
period, we change the frequency of writes to the DAC driver. For instance, consider the
transition from the second to the third note of the tune from G to D. If the note duration
for G is 500 milliseconds then that implies our writing frequency should be 196 Hz for
500 milliseconds, and then at the 501st millisecond the frequency changes to 294 Hz (D’s
frequency).

When describing a musical etude, each note should be ideally mapped to its distinct
duration in the program. A note duration can be a half note (1000 milliseconds) or a quarter
note (500 milliseconds). The note duration of each of the 28 notes of the "Twinkle, Twinkle"
tune is given below (Q implies a quarter note and H implies a half note):

Q Q Q Q Q Q H Q Q Q Q Q Q H Q Q Q Q Q Q H Q Q Q Q Q Q H

Listing 15 shows the entire program running on the SynchronVM that cyclically plays the
"Twinkle, Twinkle, Little Stars" tune. The first 20 lines consists of declarations initialising a
List data type and other standard library functions. Lines 72 - 86 consist of the principal logic
of the program. Listing 15 can be compiled and run, unaltered, on an STM32F4-discovery
board.

Listing 15 The Twinkle, Twinkle tune (Section 6.3) running on SynchronVM
1 data List a where
2 Nil : List a
3 Cons : a -> List a -> List a
4

5 head : List a -> a
6 head (Cons x xs) = x
7

91

A. Sarkar, B.J. Svensson, M. Sheeran 23:

8 tail : List a -> List a
9 tail Nil = Nil

10 tail (Cons x xs) = xs
11

12 not : Int -> Int
13 not 1 = 0
14 not 0 = 1
15

16 msec : Int -> Int
17 msec t = t * 1000
18

19 usec : Int -> Int
20 usec t = t
21

22 after : Int -> Event a -> a
23 after t ev = syncT t 0 ev
24

25 g : Int
26 g = usec 2551
27

28 a : Int
29 a = usec 2273
30

31 b : Int
32 b = usec 2025
33

34 c : Int
35 c = usec 1911
36

37 d : Int
38 d = usec 1703
39

40 e : Int
41 e = usec 1517
42

43 hn : Int
44 hn = msec 1000
45

46 qn : Int
47 qn = msec 500
48

49 twinkle : List Int
50 twinkle = Cons g (Cons g (Cons d (Cons d (Cons e (Cons e (Cons d
51 (Cons c (Cons c (Cons b (Cons b (Cons a (Cons a (Cons g
52 (Cons d (Cons d (Cons c (Cons c (Cons b (Cons b (Cons a
53 (Cons d (Cons d (Cons c (Cons c (Cons b (Cons b (Cons a Nil)
54))))))))))))))))))))))))))
55

56 durations : List Int
57 durations = Cons qn (Cons qn (Cons qn (Cons qn (Cons qn (Cons qn (Cons hn
58 (Cons qn (Cons qn (Cons qn (Cons qn (Cons qn (Cons qn (Cons

hn
59 (Cons qn (Cons qn (Cons qn (Cons qn (Cons qn (Cons qn (Cons

hn
60 (Cons qn (Cons qn (Cons qn (Cons qn (Cons qn (Cons qn (Cons

hn Nil)
61))))))))))))))))))))))))))
62

63 dacC : Channel Int
64 dacC = channel ()
65

66 noteC : Channel Int
67 noteC = channel ()
68

69 noteDuration : Int
70 noteDuration = msec 500

92 CHAPTER 4. SYNCHRON - AN API AND RUNTIME FOR EMBEDDED SYSTEMS

23: Synchron - An API and Runtime for Embedded Systems

71

72 playerP : List Int -> List Int -> Int -> () -> ()
73 playerP melody nt n void =
74 if (n == 29)
75 then let _ = after (head nt) (send noteC (head twinkle)) in
76 playerP (tail twinkle) durations 2 void
77 else let _ = after (head nt) (send noteC (head melody)) in
78 playerP (tail melody) (tail nt) (n + 1) void
79

80 tuneP : Int -> Int -> () -> ()
81 tuneP timePeriod vol void =
82 let newtp =
83 after timePeriod (choose (recv noteC)
84 (wrap (send dacC (vol * 4095))
85 (λ _ -> timePeriod))) in
86 tuneP newtp (not vol) void
87

88 main =
89 let _ = spawnExternal dacC 0 in
90 let _ = spawn (tuneP (head twinkle) 1) in
91 let _ = spawn (playerP (tail twinkle) durations 2) in
92 ()

Our application consists of two software processes and one external hardware process.
The TimeW rite values of each of the fourteen notes are represented as the list twinkle on
Lines 49-54 and the note durations are contained in the durations list (Lines 56-61). We
use two channels - dacC to communicate with the DAC and noteC to communicate between
the two software processes.

Owing to the different time periods of the two processes, their Tlocal clock progresses at
different rates. In Figure 15 we visualise the message passing that occurs between the two
software process and the hardware process when transitioning from a note C4 to a note G4.

Figure 15 Moving from the note C4 to note G4

As the playerP process runs once every 500 milliseconds, the tuneP process completes
500 ∗ 103/1915 = 261cycles when playing the note C. For the next note, G, the TimeW rite

value changes to 1432 microseconds and the corresponding write frequency changes to 392
cycles and the process cyclically carries on.

93

